HAYDEN BOORS UNIX® Systemy Library

PR
u“lxl

SHELL PROGCGRAMMING

STEPHEN G. HKDCHAN and PATRICK H. WDOD

A QUICK REVIEW OF THE BASICS

This chapter provides a review of the UNIX System, including the file system, basic
commands, file name substitution, /O redirection, and pipes.

« Some Basic Commands -

Displaying the Date and Time: The date Command

The date command tells the system to print the date and time:

$ date
Sat Oct 29 15:40:52 EDT 1983
$

date prints the day of the week, month, day, time (24 hour clock, eastern daylight time),
and year. Throughout this book, whenever we use boldface type like this,
it’s to indicate what you, the user, types in. Normal face type like this is
used to indicate what the UNIX system prints.

Every UNIX command is ended with the pressing of the RETURN key. RETURN
says that you are finished typing things in and are ready for the UNIX system to do its
thing.

Finding Out Who’s Logged In: The who Command

The who command can be used to get information about all users who are currently
iogged into the system:

¢ A QUICK REVIEW OF THE BASICS 5

% who

pat tty29 Oct 29 14:40
ruth tty37 Cct 29 10:54
steve tty25 Oct 29 15:52
$

Here there are three usersflogged in, pat, ruth, and steve. Along with each user
id, is listed the 7y number of that user and the day and time that user logged in. The tty
number is 2 unique identification number the UNIX system gives to each terminal.

The who command also can be used to get information about yourself:

$ who am i
pat tty29 Oct 29 14:40

$

who and who am 1 are actually the same command: who. In the latter case, the am
and 1 are arguments to the who command.

Echoing Characters: The echo Command

The echo command prints (or echoes) at the terminal whatever else you happen to type
on the line (there are some exceptions to this that you’ll learn about later):

$ echo this is a test
this is a test
$ echo why not print out a longer line with echo?
why not print out a longer line with echo?
$ acho
A blank line is displayed
$ echo one two three four five
one two three four five

$

You will notice from the last example that echo squeezes out extra blanks between
words. That’s because on a UNIX system, it’s the words that are important; the blanks
are merely there to separate the words. Generally, the UNIX system ignores extra blanks
{you’ll learn more about this in the next chapter).

+ Working with Files .

The UNIX system recognizes only three basic types of files: ordinary files, directory
files, and special files. An ordinary file is just that: any file on the system that contains
data, text, program instructions, or Just about anything else. Directories are described later
in this chapter. As its name implies, a special file has a special meaning to the UNIX sys-
tem, and is typically associated with some form of [/O.

6 o UNIX SHELL PROGRAMMING ¢

A file name can be composed of just about any character directly available from the
keyboard (and even some that aren’t) provided the total number of characters contained in
the name is not greater than 14. If more than 14 characters are specified, the UNIX sys-
tem simply ignores the extra characters.

The UNIX system provides many tools that make working with files easy. Here
we’ll review many of the basic file manipulation commands.

Listing Files: The 1s Command

To see what files you have stored in your directory, you can type the 1s command:

$ 1s
READ ME
names
rie

$

This output indicates that three files called READ ME, names, and rje are contained
in the current directory.

Displaying the Contents of a File: The cat Command

You can examine the contents of a file by using the cat command. The argument o
cat is the name of the file whose contents you wish to examine.

$ cat names
Susan

Jeff

Henry
Allan

Ken

$

Counting the Number of Words in a File: The wc Command

With the wc command, you can geta count of the total number of lines, words, and chat-
acters of information contained in a file. Once again, the name of the file is needed as
the argument to this command:

$ wc names
5 5 27 names

¢ A QUICK REVIEW OF THE BASICS ¢ 7

The wc command lists three numbers followed by the file name. The first number
represents the number of lines contained in the file (5), the second the number of words
contained in the file (in this case also 5), and the third the number of characters contained
in the file (27).)

Command Options

Most UNIX commands allow the specification of options at the time that a command is
sxecuted. These options generally follow the same format:

~letter
That is, a command option is a minus sign followed immediately by a single letter. For
example, in order to count just the number of lines contained in a file, the option -1
{that’s the letter 1) is given to the wc command:
5 we ~1 names
5 names
To count just the number of characters in a file, the —c option is specified:
$ woe -c names
27 names
Finally, the —w option can be used to count the number of words contained in the file:
$ we -w names

5 names

Some commands require that the options be listed before the file name arguments.
For example, sort names -r is acceptable whereas wc names -1 is not. Let’s
generalize by saying that command options should precede file names on the command
line,

king a Copy of a File; The cp Command

in order to make a copy of a file, the cp command is used. The first argument to the
command is the name of the file to be copied (known as the source file), and the second
argument is the name of the file to place the copy into (known as the destination file).
You can make a copy of the file names and callit saved names as follows:

8 ¢ UNIX SHELL PROGRAMMING ¢

$ cp names saved names

$

Execution of this command causes the file named names to be copied into a filg
named saved names. As with many UNIX commands, the fact that a command
prompt was displayed after the cp command was typed indicates that the command ex
cuted successfully.

Renaming a File: The mv Command

A file can be renamed with the mv command. The arguments to the mv command f
low the same format as the cp command. The first argument is the name of the file
be renamed, and the second argument is the new name. So to change the name of the file
saved names to hold it, for example, the following command would do the tric

$ mv saved names hold it

$

When executing a rav or cp command, the UNIX system does not care whether the fi
specified as the second argument already exists. If it does, then the contents of the fi
will be lost.” So, for example, if a file called old names exists, then executing 4
command

cp names old names

would copy the file names to old names, destroying the previous contents
old names in the process. Similarly, the command

mv names old names

would rename names to old names, even if the file 0ld names existed prior
execution of the command.

Removing a File: The rm Command

To remove a file from the system, you use the rm command. The argument to rm
simply the name of the file to be removed:

$ xm hold it
s

You can remove more than one file at a time with the rm command by simply specifyi
all such files on the command line. For example, the following would remove the thr
files wb, collect, and mon:

1 Assuming you have the proper permission to write to the file.

o A QUICK REVIEW OF THE BASICS g

S rm wb collect mon

s

- Working with Directories -

Suppose you had a set of files consisting of various memos, proposals, and letters.
Further suppose that you had a set of files that were computer programs. It would seem
logical to group this first set of files into a directory called documents, for example,
and the latter set of files into a directory called programs. Such a directory organiza-
tion is illustrated in Fig. 2-1.

doculne 1S programs
|
! | ! i | | i |]

plan dact 5y8.A newhire nolSK AMG.reply wb collect mon

Fig.2-1. Example directory structure

The file directory documents contains the files plan, dact, sys.3,
new.hire, no.JSK, and AMG.reply. The directory programs contains the files
wb, collect, and mon.

At some point you may decide to further categorize the files in a directory. This
can be done by creating subdirectories and then placing each file into the appropriate sub-
directory. For example, you might wish to create subdirectories called memocs, pro-
posals,and letters inside your documents directory, as shown in Fig, 2-2.

documents programs
mem()s proposals letters whb collect mon
dact sYE.A newhire noJSK AMGreply

Fig.2-2. Directories containing subdirectories

documents contains the subdirectories memos, proposals, and letters.
Each of these directories in turn contains two files: memos contains plan and dact;
proposals contains sys.Aand new.hire;and letters contains no.JSK and
AMG.reply.

10 ¢ UNIX SHELL PROGRAMMING ¢

While each file in a given directory must have a unique name, files contained in dif-
ferent directories do not. So, for example, you could have a file in your programs
directory called dact, even though a file by that name also exists in the memos sub-
directory. ;

The Home Directory and Path Names

The UNIX system always associates each user of the system with a particular directory.
When you log into the system, you are placed automatically into a directory called your
home directory.

Assume your home directory is called steve and that this directory is actually a
subdirectory of a directory called usx. Therefore, if you had the directories docu-
ments and programs as illustrated in Fig. 2-2, the overall directory structure would
actually look something like this:

/
usr
|
[l l CC0
pat steve ruth
l
I
docurnents programs
|
| | | l
MEmos proposals letters wb collect mon
plan dact 5y8.A newhire 10JSK AMG.reply

Fig.2-3. Hierarchical directory structure

A special directory known as / (pronounced slask) is shown at the top of the directory
tree. This directory is known as the root.

Whenever you are ‘‘inside’’ a particular directory (called your current working
directory), the files contained within that directory are immediately accessible. If you
wish to access a file from another directory, then you can either first issue a command to
“change’’ to the appropriate directory and then access the particular file, or you can
specify the particular file by its path name.

A path name enables you to uniquely identify a particular file to the UNIX system.
In the specification of a path name, successive directories along the path are separated by
the slash character /. A path name that begins with a slash character is known as a full
path name, since it specifies a complete path from the root. So, for example, the path
name /usr/steve identifies the directory steve contained under the directory
usy. Similarly, the path name /usr/steve/documents references the directory
documents as contained in the directory steve under usr. As a final example, the

o A QUICK REVIEW OF THE BASICS ¢ 11

path name /usr/steve/documents/letters/AMG.reply identifies the file
AMG. reply contained along the appropriate directory path.

In order to help reduce some of the typing that would otherwise be required, UNIX
provides certain notational conveniences. Path names that do not begin with a slash char-
acter are known as relative path names. The path is relative to your current working
directory. For example, if you just logged into the system and were placed into your
home directory /usr/steve, then you could directly reference the directory docu-
ments simply by typing documents. Similarly, the relative path name
programs/mon could be typed to access the file mon contained inside your pro-
grams directory.

By convention, the directory name .. always references the directory that is one
level higher. For example, after logging in and being placed into your home directory
/usr/steve, the path name .. would reference the directory usr. And if you had
issued the appropriate command to change your working directory to
documents/letters, then the path name .. would reference the documents
directory, SN would reference the directory steve, and
../proposals/new.hire would reference the file new.hire contained in the
proposals directory. Note that in this case, as in most cases, there is usually more
than one way to specify a path to a particular file.

Another notational convention is the single period ., which always refers to the
current directory.

Now it’s time to examine commands designed for working with directories.

Displaying Your Working Directory: The pwd Command

The pwd command is used to help you *‘get your bearings’” by telling you the name of
your current working directory.

Recall the directory structure from Fig. 2-3. The directory that you are placed in
upon logging into the system is called your home directory. You can assume from Fig.
2-3 that the home directory for the user steveis /usr/steve. Therefore, whenever
steve logs into the system, he will automatically be placed inside this directory. To
verify that this is the case, the pwd (print working directory) command can be issued:

$ pwd
/usr/steve

=

The output from the command verifies that steve’s current working directory is
/usr/steve.

Changing Directories: The cd Command

You can change your current working directory by using the c¢d command. This com-
mand takes as its argument the name of the directory you wish to change to.

12 ¢ UNIX SHELL PROGRAMMING ¢

Let’s assume that you just logged into the system and were placed inside your
home directory, /usr/steve. This is depicted by the => in Fig. 2-4.

/
ust
]
! !] coo
pat = . sieve ruth
|
documents programs
| |
] , | | l
memos proposals letters wh collect mon
[1 1
] i] '
plan dact sys.A © newhire n0JSK AMG.reply

Fig.2-4. Current working directory is steve

You know that there are two directories directly “‘below’’ steve’s home directory
documents and programs. In fact, this can be verified at the terminal by issuing the

1s command:

5 1s
documents
programs

5

The 1s command lists the two directories documents and programs the same W

it listed other ordinary files in previous examples.
In order to change your current working directory, you issue the cd command, fo

lowed by the name of the directory to change to:

$ ¢d documents

¢ A QUICK REVIEW OF THE BASICS ¢ 18

/
usr
|
l l v] soo
pat e SEEVE ruth
l
I)
= documents programs
| V |
[I i
memos propesals letters whb collect mon
plan dact sys.A new.hire 80JSK AMG.reply

Fig.2:5. cd documents

You can verify at the terminal that the working directory has been changed by issuing the
pwd command:

$ pwd
/usr/steve/documents

$
The easiest way to get one level up in a directory is to issue the command
cd ..

since by convention . . always refers to the directory one level up (known as the parent
directory).

$ ed ..
$ pwd
/usxr/steve

$

14 o UNIX SHELL PROGRAMMING ¢

(l l vEO
pat =p steve ruth
documents programs
memos proposals letters wh coliect mon
plan dact sys.A new.hire noJSK AMG.reply
Fig.2-6. cd ..

If you wanted to change to the letters directory, you could get there with a si
gle cd command by specifying the relative path documents/letters:

$ cd documents/letters

$ pwd

/usr/steve/documents/letters

$

/
usr
! aoa
pat ruth
documents programs
IHEMOos proposals Iettets c: collect mon
plan dact sys.A new.hire noJ SK AMG.reply

Fig.2.7. cd documents/letters

You can get back up to the home directory with a single cd command as shown:

¢ A QUICK REVIEW OF THE BASICS o 15

S ed ../..
$ pwd
/usr/steve
$

Or you can get back to the home directory using a full path name instead of a relative
one: ‘
$ ed fusr/steve
$ pwd
/usr/steve

$

Finally, there is a third way to get back to the home directory that is also the easiest.
Typing the command cd without an argument will always place you back into your
home directory, no matter where you are in your directory path,

$ ed
$ pwd
/usr/stevev

$

More on the 1s Command

Whenever you type the command 1s, it is the files contained in-the current working
directory that are listed. But you can also use 1s to obtain a list of files in other direc-
tories by supplying an argument to the command. First let’s get back to your home direc-

tory:

$ ed
$ pwd
/usr/steve

$
Now let’s take a look at the files in the current working directory:

$is
documernts
programs

5

If you supply the name of one of these directories to the 1s command, then you can get
a list of the contents of that directory. So, you can find out what’s contained in the
documents directory simply by typing the command 1s documents:

16 o UNIX SHELL PROGRAMMING ¢

$ 1ls documents
letters

memos
proposals

$

To take a look at the subdirectory memos, you follow a similar procedure:

5 lz documents/memos
dact
plan
$
If you specify a nondirectory file argument to the 1s command, you simply get th
name echoed back at the terminal:

5 ls documents/memos/plan
documents/memos/plan

$

There is an option to the 1s command that enables you to determine wh
particular file is a directory, among other things. The -1 option (the letter I) pro
more detailed description of the files in a directory. If you were currently in s
home directory as indicated in Fig. 2-6, then the following would illustrate the
supplying the —1 option to the 1s command:

$ 1s -1

total 2

drwxr-xr-x 5 steve DP3725 80 Jun 25 13:27 documents
drwxr—-xXr-x 2 steve DP3725 96 Jun 25 13:31 programs
$

The first line of the display is a count of the total number of blocks (1,024
UNIX System V) of storage that the listed files use. Each successive line disp
the 1s -1 command contains detailed information about a file in the directory.
character on each line tells whether the file is a directory. If the characteris d,
g directory; if it is — then it is an ordinary file; finally, if itis b, c, or p, th
special file. '

“The next nine characters on the line tell how every user on the system ¢;
the particular file. These access modes apply to the file’s owner (the first th
ters}, other users in the same group as the file’s owner (the next three charact
finally to all other users on the system (the last three characters). They tell wh
user can read from the file, write to the file, or execute the contents of the file.

o A QUICK REVIEW OF THE BASICS ¢ 17

The 1s -1 command lists the link count (see later in this chapter), the owner of
the file, the group owner of the file, how large the file is (i.e.,, how many characters are
contained in it), and when the file was last modified. The information displayed last on
the line is the file name itself,

$ 1ls -1 programs

total 4

~IWEL-HT—X i steve DP3725 358 Jun 25 13:31 collect
~IWHRI~XY~X 1 steve DP3725 1219 Jun 25 13:31 mon
~IWXY-XI-X 1 steve DP3725 89 Jun 25 13:30 wb

$

The dash in the first column of each line indicates that the three files collect, mon,
and wb are ordinary files and not directories.

Creating a Directory: The mkdir Command

To create a directory, the mkdir command must be used. The argument to this com-
mand is simply the name of the directory you want to make. As an example, assume that
you are still working with the directory structure depicted in Fig. 2-7 and that you wish to
create a new directory called misc on the same level as the directories documents
and programs. Well, if you were currently in your home directory, then typing the
command mkdir misc would achieve the desired effect:

$ mkdir misc
$

Now if you execute an 1s command, you should get the new directory listed:

$ 1s
documents
misc
programs

5

© The diréctory structure will now appear as shown in Fig, 2-8,

18 ¢ UNIX SHELL PROGRAMMING ¢

Sf.T/e

documents programs misc
memos proposals letters wh collect mon
gién dact SYE.A newhire noJSK AMUC.reply

Fig. 2-8. Directory structure with newly created misc directory

Copying a File from One Directory to Another

The cp command can be used to make a copy of a file from one directory into another.
For example, you can copy the file wb from the programs directory into a file called
wbx in the misc directory as follows:

5 cp programs/wb misc/wbx

3

Since the two files are contained in different directories, it is not even necessary that they
be given different names: '

$ cp programs/wb misc/wb

$

When the destination file has the same name as the source file (in a different directory,
course), then it is necessary to specify only the destination directory as the second arg

ment:

$ ecp programs/wb misc

$

When this command gets executed, the UNIX system recognizes that the seco
argument is the name of a directory and copies the source file into that directory. T

new file is given the same name as the source file. You can copy more than one file into

a directory by listing the files to be copied before the name of the destination directory::
you were currently in the programs directory, then the command '

$ cp wb collect mon . ./misc

$

would copy the three files wb, collect,and mon into the misc directory, undert
same names.

¢ A QUICK REVIEW OF THE BASICS 19

To copy a file from another directory into your current one and give it the same
name, use the fact that the current directory can always be referenced as *. :

$ pwd

/usr/steve/misc -
$ e¢p ../programs/collect .

$

The above command copies the file collect from the directory ../programs into
the current directory {/usr/steve/misc).

Moving Files between Directories

You recall that the mv command can be used to rename a file. However, when the two
arguments to this command reference different directories, then the file is actually moved
from the first directory into the second directory. For example, first change from the
home directory to the documents directory:

$ e¢d documents

$

Suppose now you decide that the file plan contained in the memos directory is really a
proposal and not a memo. So you would like to- move it from the memos directory into
the proposals directory. The following would do the trick:

$ mv memos/plan proposals/plan
s

As with the cp command, if the source file and destination file have the same name,
then only the name of the destination directory need be supplied.

$ mv memos/plan proposals

$

Also like the cp command, a group of files can be simultaneously moved into a direc-
tory by simply listing all files to be moved before the name of the destination directory:

pwd

5 pud
fusr/steve/programs

$ mv wh collect mon ../misc
3

This would move the three files wb, collect, and mon into the directory misc.
You can also use the mv command to change the name of a directory. For exam-
ple, the following will rename the directory programs to bin.

20 o UNIX SHELL PROGRAMMING ¢

$ mv programs bin

$

Linking Files: The 1n Command

In simplest terms, the 1n command provides an easy way for you to give more than one
name to a file. The general form of the command is

1n from to

This links the file from to the file 0.

Recall the structure of steve’s programs directory from Fig. 2-8. In that
directory he has stored a program called wb. Suppose he decides that he’d also like to
call the program writeback. The most obvious thing to do would be to simply create
acopy of wb called writeback:

$ cp wb writeback
$

The drawback with this approach is that now twice as much disk space is being consumed
by the program. Furthermore, if steve ever changes wb he may forget to make a new
copy of writeback, resulting in two different copies of what he thinks is the same
program.

By linking the file wb to the new name, these problems are avoided:

$ 1ln wb writeback
$

Now instead of two copies of the file existing, only one exists with two different names:
wb and writeback. The two files have been logically linked by the UNIX system.
As far as you’re concerned, it appears as though you have two different files. Executing
an 1s command shows the two files separately:

5 1s
collect
mon

wh
writeback

5
Look what happens when you execute an 1s -1:
$ 1s ~1

total 5
~LWXY~—XI—X 1 steve DP3725 358 Jun 25 13:31 collect

o A QUICK REVIEW OF THE BASICS ¢ 21

~IWXIL~XI~X 1 steve DP3725 1219 Jun 25 13:31 mon
~YWXI-XT~X 2 steve DP3725 89 Jun 25 13:30 wb
~IrWRIL~XIL~X 2 steve DP3725 89 Jun 25 13:30 writeback
$

The number right before steve is 1 for collect and mon and 2 for wb and
writeback. This number is the number of links to a file, normally 1 for nonlinked,
nondirectory files. Since wb and writeback are linked, this number is 2 for these
files. This implies that you can link to a file more than once.

You can remove either of the two linked files at any time, and the other will not be
removed:

$ rm writeback

$ 1s -1

total 4

~IWXT~XI~X 1 steve DP3725 358 Jun 25 13:31 collect
~IWXI~XI-X 1 steve DP3725 1219 Jun 25 13:31 mon
~IWXIT=XI~X 1 steve DP3725 89 Jun 25 13:30 wb

3

Note that the number of links on wb went from 2 to 1 since one of its links was removed.

Most often, 1n is used to link files between directories. For example, suppose
pat wanted to have access to steve’s wb program. Instead of making a copy for
himself (subject to the same problems described above) or including steve’s pro-
grams directory in his PATH (described in detail in a later chapter), he can simply link
to the file from his own program directory; e.g.

$ pwd

/usr/pat/bin pat’s program directory

$ 1s -1

total 4

—IWXL—XI~X 1 pat DP3822 1358 Jan 15 11:01 lcat
~IWXI~XY~X 2 pat DP3822 504 Apr 21 18:30 xtr
$ 1n /usr/steve/wb . Link wbto pat’sbin

$ 1s -1

total 5

~EHET-XI—% 1 pat DpP3822 1358 Jan 15 11:01 lcat
= EWRE-RE X 2 steve DP3725 89 Jun 25 13:30 wb
“EWHT KL% 1 pat bp3822 504 Apr 21 18:30 xtr
5

Note that steve is still listed as the owner of wb, even though the listing came from
pat’s directory. This makes sense, since really only one copy of the file exists—and it’s
owned by steve.

22 o UNIX SHELL PROGRAMMING o

The only stipulation on linking files is that the files to be linked together must
reside on the same file system. If they don’t, then you’ll get an error from 1n when you
try to link them. (To determine the different files systems on your system, execute the
df command. The first field on each line of output is the name of a file system.)

One last note before leaving this discussion: The 1n command follows the same
general format as cp and mv, meaning that you can link a bunch of files at once into a
directory using the format

1n files directory

Removing a Directory: The rmdir Command

You can remove a directory with the rmdir command. The stipulation involved in
removing a directory is that no files be contained in the directory. If there are files in the
directory when rmdir is executed, then you will not be allowed to remove the direc-
tory. To remove the directory misc that you created earlier, the following could be
used:

$ rmdir /usr/steve/misc

$

Once again, the above command will work only if no files are contained in the misc
directory; otherwise, the following will happen:

$ rmdir /usr/steve/misc
rmdir: /usr/steve/misc not empty

$

If this happens and you still want to remove the misc directory, then you would
first have to remove all of the files contained in that directory before reissuing the
rmdir command.

As an alternate method for removing a directory and the files contained in it, you
can use the —r option to the rmcommand. The format is simple:

rm -r dir

where dir is the name of the directory that you want to remove. rm will remove the indi-
cated directory and all files (including directories) in it.

o A QUICK REVIEW OF THE BASICS o 23

+ File Name Substitution -

The Asterisk

One very powerful feature of the UNIX system that is actually handled by the shell is file
rame substitution. Let’s say your current directory has these files in it;

$ 1s
chaptl
chapt?2
chapt3
chapt4
$

Suppose you want to print their contents at the terminal. Well, you could take advantage
of the fact that the cat command allows you to specify more than one file name at a
time. When this is done, the contents of the files are displayed one after the other.

$ cat chaptl chapt2 chapt3 chapt4
$
But you can also type in:

5 cat *

and get the same results. The shell automatically substitutes the names of all of the files
in the current directory for the *. The same substitution occurs if you use * with the
echo command:

$ scho *
chaptl chapt2 chapt3 chapt4

&

2

Here the * is again replaced with the names of all the files contained in the current direc-
tory, and the echo command simply displays them at the terminal.
Any place that * appears on the command line, the shell performs its substitution:

$ echo * : =*
chaptl chaptZ chapt3 chapt4d : chaptl chapt2 chapt3 chapt4
$

24 o UNIX SHELL PROGRAMMING ¢

The * can also be used in combination with other characters to limit the file names
that are substituted. For example, let’s say that in your current directory you have not
only chaptl through chapt4 but also files a, b, and c:

$ 1s

a

b

c
chaptl
chapt2
chapt3
chaptd
5

To display the contents of just the files beginning with chapt, you can type n:

5 cat chapt¥

$

The chapt* matches any file name that begins with chapt. All such file names
matched are substituted on the command line.

The * is not limited to the end of a file name; it can be used at the beginning or in
the middle as well:

$ aecho *tl

chaptl

5 acho *t*

chaptl chapt2 chapt3 chaptd
$ acho *=x

*x

$

in the first echo, the *t1 specifies all file names that end in the characters t1. Inthe
serond echo, the first * matches everything up to 2 t and the second everything after;
. all file names containing a t are printed. Since there are no files ending with x,
6 substitution occurs in the last case. Therefore, the echo command simply displays
i,

Matching Single Characters

The asterisk (*) matches zero or more characters, meaning that x* will match the file x
as well as x1, x2, xabc, etc. The question mark (2} matches exactly one character.
So cat 2 will print all files with one-character names, just as cat x? will print all

¢ A QUICK REVIEW OF THE BASICS ¢ 25

files with two-character names beginning with x.

$ 1s

a

aa

aax

alice

b

bb

c

ce

reportl
report2
report3

5 echo ?

a bc

$ echo a?
aa

$ echo ?°?
aa bb cc

$ acho ?2%
aa aax alice bb cc reportl report2 report3

$

In the last example, the 2?2 matches two characters, and the * matches zero or more up
to the end. The net effect is to match all file names of two or more characters.

Another way to match a single character is to give a list of the characters to use in
the match inside square brackets [1. For example, [abc] matches one letter a, b,
or c. It's similar to the 2, but it allows you to choose the characters that will be
matched. The specification [0-9] matches the characters 0 through 9. The only res-
triction-in specifying a range of characters is that the first character must be alphabeti-
cally less than the last character, so that [z-£] is not a valid range specification.

By mixing and matching ranges and characters in the list, you can perform some
very complicated substitutions. For example, [a-np-z]* will match all files that start
with the letters a through n or p through z (or more simply stated, any lowercase
fstipr Byt o)

H the first character following the [is a !, then the sense of the match is inverted.

matches any character except a lowercase letter, and

*[tlo]

matches any file that doesn’t end with the lowercase letter o.

26 o UNIX SHELL PROGRAMMING ¢

Table 2-1 gives a few more examples of file name substitution.

TABLE 2-1. File name substifution examples

cp ../programs/*

l1s [a=z]*[!0-9]

Command Description

echo a* Print the names of the files beginning with a

cat *.c Print all files ending in . c

rm KL% Remove all files containing a period

1s x* List the names of all files beginning with x

rm * Remove all files in the current directory
(note: be careful when you use this)

echo a*b Print the names of all files beginning with a

and ending with b

Copy all files from . . /programs into the
current directory

List files that begin with a lowercase letter and
don’t end with a digit.

. Standard Input, Standard Output, and I/O Redirection -

Standard Input and Standard Output

Most UNIX system commands take input from your terminal and send the resulting out-
put back to your terminal. A command normally reads its input from a place called stan-
dard input, which happens to be your terminal by default. Similarly, a command nor-
mally writes its output to standard output, which is also your terminal by default. This

concept is depicted in Fig. 2-9.

standard input
e G _r-tfpf-_){: command

Fig.2-9. Typical UNIX command

You will recall that executing the who command results in the display of the currently
logged-in users. More formally, the who command writes a list of the logged-in users to

standard output. This is depicted in Fig. 2-10.

¢ A QUICK REVIEW OF THE BASICS + 27

7
’;’
,f
-
s
L
&

’/
L7 al tty01 Sep 12 07:30
cko tty36 Sep 12 13:32
who pat tty2l Sep 12 10:10
ruth tty24 Sep 12 13:07

‘\\§teve £ty25 Sep 12 13:03

Fig.2-10. who command

Ifa sort command is executed without a file name argument, then the command
will take its input from standard input. As with standard output, this is your terminal by
default. :

When entering data to a command from the terminal, the CTRL and D keys
(denoted CTRL-d in this text) must be simultaneously pressed after the last data item has
been entered. This tells the command that you have finished entering data. As an exam-
ple, let’s use the sort command to sort the following four names: Tony, Barbara,
Harry, Dick. Instead of first entering the names into a file, we’ll enter them directly from
the terminal: .

$ sort
Tony
Barbara
Harry
Dick
CTRL-d
Barbara
Blek

:
3
&
&
-

Since no file name was specified to the sort command, the input was taken from stan-
dard input, the terminal. After the fourth name was typed in, the CTRL and D keys were
pressed to signal the end of the data. At that point, the sort command sorted the four
names and displayed the results on the standard output device, which is also the terminal.
This is depicted in Fig, 2-11.

28 o UNIX SHELL PROGRAMMING ¢

\~‘~ ”;7
s ~ ~ - ¢ -
Tony # Barbara
Barbara Dick
sort
Harry Harry
Dick & ~ Tony
L4 < ~ -~
& i ~ ~
o sl
* < '&;

Fig.2-11. sort command

The we command is another example of a command that takes its input from stan-
dard input if no file name is specified on the command line. So the following shows an
example of this command used to count the number of lines of text entered from the ter-
minal:

5 we -1
This is text that
is typed on the
standard input device.
CTRL-d

3
$

You will note that the CTRL-d that is used to terminate the input is not counted as a
separate line by the wc command. Furthermore, since no file name was specified to the '
we command, only the count of the number of lines (3) is listed as the output of the com-
mand. (You will recall that this command normally prints the name of the file directly
after the count.)

Output Redirection

The output from a command normally intended for standard output can be easily
“diverted’’ to a file instead. This capability is known as output redirection.

If the notation > file is appended to any command that normally writes its output
to standard output, then the output of that command will be written to file instead of your
terminal:

$ who > users

$

This command line causes the who command to be executed and its output to be written
into the file users. You will notice that no output appears at the terminal. This is
because the output has been redirected from the default standard output device (the termi-
nal) into the specified file:

o A QUICK REVIEW OF THE BASICS 29

$ cat users

cko tty®l Sep 12 07:30
ai ttylS Sep 12 13:32
ruth tty2l Sep 12 10:10
pat tty24 Sep 12 13:07
steve tty25 Sep 12 13:03
$

If a command has its output redirected to a file and the file already contains some data,
then that data will be lost. Consider this example:

$ echo line 1 > users
$ cat users

line 1

$ echo line 2 >> users
$ cat users

line 1

line 2

$

The second echo command uses a different type of output redirection indicated by the
characters >>. This character pair causes the standard output from the command to be
appended to the specified file. Therefore, the previous contents of the file are not lost and
the new output simply gets added onto the end.

By using the redirection append characters >>, you can use cat to append the
contents of one file onto the end of another:

$ cat filel

This is in filel.

$ cat file2

This is in file2.

$ cat filel >> file2 Append filel tofile2
$ cat file2

This is in file2.

This is in filel.

&

4

e followed immediately by the second file, and so on:

30 o UNIX SHELL PROGRAMMING o

$ cat filel
This is in filel.
5 cat file2
This is in file2.
$ cat filel file2
This is in filel.

This is in fileZ2.

$ cat filel file2 > file3 Redirect it instead
$ cat file3

This is in filel.

This is in fileZ.

$

Now you can see where the cat command gets its name: when used with more than one
file its effect is to catenate the files together.
Incidentally, the shell recognizes a special format of output redirection. If you type

S

> file

not preceded by a command, then the shell will create an empty (i.e., zero character
Iength) file for you. If file previously exists, then its contents will be lost.

Input Redirection

Just as the output of a command can be redirected to a file, so can the input of a command
be redirected from a file. And as the greater-than character > is used for output redirec-
tion, the less-than character < is used to redirect the input of a command. Of course, -
only commands that normally take their input from standard input can have their inpu
redirected from a file in this manner.

In order to redirect the input of a command, you type the < character followed by
the name of the file that the input is to be read from. So, for example, to count the -
number of lines in the file users, you know that you can execute the command wc '
~1 users:

o s

A

RN

5 we —~1 users
2 users

B S A

3

Or, you can count the number of lines in the file by redirecting the input of the wc com
mand from the terminal to the file users:

S we -1 < users
2

¢ A QUICK REVIEW OF THE BASICS » 31

You will note that there is a difference in the output produced by the two forms of
the wc command. In the first case, the name of the file users is listed with the line
count; in the second case, it is not. This points out the subtle distinction between the exe-
cution of the two commands. In the first case wc knows it is reading its input from the
file users. In the second case, it only knows that it is reading its input from standard
input. The shell redirects the input from the terminal to the file users {more about this
in the next chapter). As far as wc is concerned, it doesn’t know whether its input is com-
ing from the terminal or from a file!

+ Pipes -

As you will recall, the file users that was created previously contains a list of all the
users currently logged into the system. Since you know that there will be one line in the
file for each user logged into the system, you can easily determine the number of users
logged in by simply counting the number of lines in the users file:

$ who > users
$ we -1 < users
5

This output would indicate that there were currently five users logged in. Now you have
a command sequence you can use whenever you want to know how many users are
logged in.

There is another approach to determine the number of logged-in users that bypasses
the use of a file. The UNIX system allows you to effectively “‘connect’” two commands
together. This connection is known as a pipe, and it enables you to take the output from
one command and feed it directly into the input of another command. A pipe is effected
by the character |, which is placed between the two commands. So to make a pipe
between the who and wc -1 commands, you simply type who | we -1:

$ who | we -1
5

The pipe that is effected between these two commands is depicted in Fig. 2-12.

32 o UNIX SHELL PROGRAMMING ¢

P NN
I’ ~
'd ‘\
4
@ ~

& b

< S 7
PRt tty0l Sep 12 07:30 N P
okc tty3é Sep 12 13:32
who pat tty?l Sep 12 10:10 wc -1 5
, TUth tty24 Sep 12 13:07
‘\ 5 1 1 G - ~ -,

\steve tty25 Sep 12 13:03 ’2 (Y

* ’

~ ’

A
5 &
[N L
~ 4
~ ’
!

Fig.2-12. Pipeline process: who | we -1

When a pipe is set up between two commands, the standard output from the first
command is connected directly to the standard input of the second command. You know
that the who command writes its list of logged-in users to standard output. Furthermore,
you know that if no file name argument is specified to the wc command then it takes its
input from standard input. Therefore, the list of logged-in users that is output from the
who command automatically becomes the input to the wc command. Note that you
never see the output of the who command at the terminal, since it is piped directly into
the wc command. This is depicted in Fig. 2-13.

[who we -1 5

Fig.2-13. Pipeline process

A pipe can be made between any two programs, provided the first program writes
its output to standard output, and the second program reads its input from standard input.

As another example of a pipe, suppose you wanted to count the number of files
contained in your directory. Knowledge of the fact that the 1s command displays one
line of output per file enables vou to use the same type of approach as before:

$ 1s | we -1
10

The output indicates that the current directory contains 10 files.

¢ A QUICK REVIEW OF THE BASICS ¢ 33

It is also possible to form a pipeline consisting of more than two programs, with the
output of one program feeding into the input of the next.

Filters

The term filter is often used in UNIX terminology to refer to any program that can take
input from standard input, perform some operation on that input, and write the results to
standard output. More succinctly, a filter is any program that can be used between two
other programs in a pipeline. So in the previous pipeline, wc is considered a filter. 1s
is not, since it does not read its input from standard input. As other examples, cat and
sort are filters, while who, date, cd, pwd, echo, rm, mv, and cp are not.

« Standard Error -

In addition to standard input and standard output there is another place known as stan-
dard error. This is where most UNIX commands write their error messages. And as
with the other two “‘standard’’ places, standard error is associated with your terminal by
default. In most cases, you never know the difference between standard output and stan-
dard error:

$ ls n* List all files beginning with n
n* not found
5

Here the *‘not found’” message is actually being written to standard error and not stan-
dard output by the 1s command. You can verify that this message is not being written
to standard output by redirecting the 1s command’s output:

$ 1s n* > foo
n* not found

$

So you see you still get the message printed out at the terminal, even though you
redirected standard output to the file foo.

The above example shows the raison d’étre for standard error: so that error mes-
sages will still get displayed at the terminal even if standard output is redirected to a file
of piped to another command.

You can also redirect standard error to a file by using the notation

command 2> file
No space is permitted between the 2 and the >. Any error messages normally intended

for standard error will be diverted into the specified file, similar to the way standard out-
put gets redirected.

34 ¢ UNIX SHELL PROGRAMMING ¢

$ ls n* 2> errors
$ cat errors
n* not found

$

. More on Commands .

Typing More Than One Command on a Line

You can type more than one command on a line provided you separate each command .
with a semicolon. For example, you can find out the current time and also your current
working directory by typing in the date and pwd commands on the same line:

$ date; pwd

Wed Apr 25 20:14:32 EST 1885
/usr/pat/kbin

$

You can string out as many commands as you like on the line, as long as each command
is delimited by a semicolon.

Sending a Command to the Background

Normally, you type in a command and then wait for the results of the command to be
displayed at the terminal. For all of the examples you have seen thus far, this waiting
time is typically quite short—maybe a second or two. However, you may have to run
commands that require many seconds or even minutes to execute. In those cases, you'll
have to wait for the command to finish executing before you can proceed further unless
you execute the command in the background.

If you type in a command followed by the ampersand character &, then that com-
mand will be sent to the background for execution. This means that the command will no
longer tie up your terminal and you can then proceed with other work. The standard ou
put from the command will still be directed to your terminal; however, in most cases the
standard input will be dissociated from your terminal. If the command does try to read
any input from standard input, it will be as if CTRL-d were typed.

5 sort data > out & Send the sort o the background
1258 Process id
$ date Your terminal is immediately available to do other work

Thu Apr 26 13:45:09 EST 1885
3

o A QUICK REVIEW OF THE BASICS ¢ 35

When a command is sent to the background, the UNIX system automatically
displays a number, called the process id for that command. In the above example, 1258
was the process id assigned by the system. This number uniquely identifies the command
that you sent to the background, and can be used to obtain status information about the
command. This is done with the ps command.

The ps Command

The ps command gives you information about the processes that are running on the sys-
tem. ps without any options prints the status of just your processes. If you typein ps
at your terminal, you’ll get a few lines back describing the processes you have running:

$ ps
PID TTY TIME COMMAND
195 01 0:21 sh The shell
1353 01 0:00 ps This ps command
1258 01 0:10 sort The previous sort
$

The ps command prints out four columns of information: PID, the process id; TTY,
the terminal number that the process was run from; TIME, the amount of computer time
in minutes and seconds that process has used; and COMMAND, the name of the process.
(The sh process in the above example is the shell that was started when you logged in,
and it’s used 21 seconds of computer time.) Until the command is finished, it shows up
in the output of the ps command as a running process. Process number 1353 in the
above example is the ps command that was typed in, and 1258 is the sort from
above.

When used with the -f option, ps prints out more information about your
processes, including the parent process id (PPID), the time the processes started
(STIME), and the command arguments.

$ ps -f
UID PID PPID C STIME TTY TIME COMMAND
steve 185 1 0 10:58:29 tty01 0:21 -sh
steve 1360 195 43 13:54:48 ttyo01l 0:01 ps -f
steve 1258 195 0 13:45:04 ttyo01 3:17 sort data

+ Command Summary -

The following table summarizes the commands reviewed in this chapter. In this table,
file refers to afile, file(s) to one or more files, dir to a directory, and dir(s) to one or more
directories.

36

¢ UNIX SHELL PROGRAMMING ¢

TABLE 2-2. Command summary

Command Description

cat file(s) Display contents of file(s) or standard input if not
supplied

cd dir Change working directory to dir

cp file, file Copy file, to file,

cpfile(s) dir ~ Copy file(s) into dir

date Display the date and time

echo args Display args

lnﬁlelﬁle Linkﬁlel toﬁlez

1nfile(s)dir Link file(s) into dir

1s file(s) List file(s)

1s dir(s) List files in dir(s) or in current directory if dir(s) is
not specified

mkdir dir(s) Create directory dir(s)

mv file, ﬁle2 Move file, to file, (simply rename it if both reference
the same directory)

mv file(s) dir ~ Move file(s) into directory dir

ps List information about active processes

pwd Display current working directory path

rm file(s) Remove files(s)

rmdir dir(s) Remove empty directory dir(s)

sort file(s) Sort lines of file(s) or standard input if not supplied

wc file(s) Count the number of lines, words, and characters in
file(s) or standard input if not supplied

who Display who’s Jogged in

