

Relation to this Course

- Underlies many fundamental services
 - Confidentiality
 - Authentication
 - Data integrity
- Is perhaps *the* basic foundation

A Brief History

- Steganography: "covered writing"
 - Demaratus (5th century B.C.)
 - German microdots (WWII)
 - Crucial flaw: Discovery yields knowledge
 - Confidentiality through obscurity
- Cryptography: "secret writing"
 - TASOIINRNPSTO and TVCTUJUVUJPO

A Brief History

- Two basic types of cryptography
 - Transposition (TASOIINRNPSTO)
 - Message broken up into units
 - Units permuted in a seemingly random but reversible manner
 - Ex: scytale
 - Difficult to make it easily reversible only by intended receiver
 - Exhibits same first-order statistics

A Brief History

- Two basic types of cryptography (cont)
 - Substitution (TVCTUJUVUJPO)
 - Message broken up into units
 - Units mapped into ciphertext
 - Ex: Caesar cipher
 - First-order statistics are isomorphic in simplest cases
 - Predominant form of encryption

How Much Security?

- Monoalphabetic substitution cipher
 - Permutation on message units—letters
 - 26! different permutations
 - Each permutation considered a *key*
 - Key space contains $26! = 4 \times 10^{26}$ keys
 - Equal to number of atoms in a gallon of water
 - Equivalent to a 88-bit key (more than DES!)

How Much Security?

- So why not use substitution ciphers?
 - Hard to remember 26-letter keys
 - But we can restrict ourselves to shorter keys
 - Ex: JULISCAERBDFGHKM, etc
 - Remember: first-order statistics are isomorphic
 - Vulnerable to simple cryptanalysis
 - Hard-to-read fonts for crypto?!

Substitution Ciphers

- Two basic types
 - Symmetric-key or conventional
 - Single key used for both encryption and decryption
 - Keys are typically short, because key space is densely filled
 - Ex: DES, 3DES, RC4, Blowfish, IDEA, etc

Substitution Ciphers

- Two basic types (cont)
 - Public-key or asymmetric
 - Two keys: one for encryption, one for decryption
 - Keys are typically long, because key space is sparsely filled
 - Ex: RSA, El Gamal, DSA, etc

Conventional Cryptography

- Block ciphers encrypt message in units called blocks
 - DES: 8-byte key (56 key bits), 8-byte block
 - Larger blocks make simple cryptanalysis useless (at least for short messages)
 - Not enough samples for valid statistics
 - "Octogram Statistics Needed"

Key and Block Size

- Do larger keys make sense for an 8byte block?
 - 3DES: Key is 112 or 168 bits, but block is still 8 bytes long (64 bits)
 - Key space is larger than block space
 - But how large is permutation space?

Anatomy of a Block Cipher

- DES: Data Encryption Standard
 - Developed as Lucifer (one of a few) at IBM in 1970s
 - Break message into 8-byte (64-bit) blocks
 - Each block broken into 32-bit halves
 - Initial permutation
 - 16 rounds of scrambling
 - Final (reverse) permutation

The Scrambling Function

- In each round i, we have L_i and R_i
 - $L_{i+1} = R_i \leftarrow typical of Feistel networks$
 - $R_{i+1} = L_i + f(R_i)$
- f-function
 - Key is compressed and permuted to 48 bits
 - R_i is expanded and permuted to 48 bits
 - 48 bits XOR'd, passed through S-boxes, then permuted again

Key Compression

- Reduction to 56 bits (no parity bits)
- Broken into halves
 - Each half is rotated by 1 or 2 bits
 - 48 bits out of 56 selected
- Why do this?
 - Use a different set of bits for each round
 - Not exactly symmetric

Data Expansion

- Data broken into 4-bit groups
- Each group expanded to 6 bits
- Why do this?
 - Match subkey length
 - Data diffusion occurs faster

Substitution Boxes (S-Boxes)

- 48 bit result broken into 6-bit units
- Each unit passed through an S-box
 - 6-bit input, 4-bit output
 - Each S-box is a 4x16 array of 4-bit numbers
 - b₁ and b₆ specify row, b₂ through b₅ specify column
- End result passed through P-box

Modes of DES Operation

- Electronic Codebook (ECB)
 - ${\scriptstyle \blacksquare}$ Each block encrypted in isolation
 - Vulnerable to block replay
- Cipher Block Chaining (CBC)
 - Each plaintext block XOR'd with previous ciphertext before encryption
 - Easily incorporated into decryption
 - What if prefix is always the same? IV!

Modes of DES Operation

- Cipher Feedback (CFB)
 - For encrypting character-at-a-time (or less)
 - Chains as in CBC
 - Also needs an IV
 - Must be unique—why?
- Output Feedback (OFB)
 - Like CFB, but some bits of output fed back into input stream

Variants and Applications

- 3DES: Encrypt using DES 3x
 - Two and three-key types
 - Inner and outer-CBC modes
 - Inner is more efficient, but less secure
- Crypt: Unix hash function for passwords
 - Uses variable expansion permutations
- DES with key-dependent S-boxes
 - Can't be done blindly

Attacks on DES

- No known systematic attack (for 16 rounds)
 - Is DES "closed" (that is, a group)?
 - If it were, double encryption would be useless
 - Is it useful at all?
 - Is DES "pure"?
 - If it were, triple encryption would be useless
- Brute force attacks only
 - Try all 256 keys!

Lucifer Goes Standard

- Generally regarded in 1970s as one of the strongest cryptosystems
- Heading toward standardization as DES
 - NSA managed to get key size reduced to 56 bits (from 112), yielding 10¹⁷ keys
 - Also apparently changed S-boxes
 - Why (or why not) do this?

Certification of DES

- Had to be recertified every ~5 years
 - 1983: Recertified routinely
 - 1987: Recertified after NSA tried to promote secret replacement algorithms
 - Withdrawal would mean lack of protection
 - Lots of systems then using DES
 - 1993: Recertified after continued lack of alternative

Enter AES

- 1998: NIST finally refuses to recertify DES
 - 1997: Call for candidates for Advanced Encryption Standard (AES)
 - Fifteen candidates whittled down to five
 - Criteria: Security, but also efficiency
 Compare Rijndael with Serpent
 - 2000: Rijndael selected as AES

Structure of Rijndael

- Unlike DES, operates on whole bytes for efficiency of software implementations
- Key sizes: 128/192/256 bits
- Variable rounds: 9/11/13 rounds
- Rounds are not Feistel networks

Structure of Rijndael

- Round structure
 - Run block through S-box
 - Permute result into 4x4/4x6/4x8 array of bytes
 - Multiply each byte by 1, 2, or 3 in GF(28)
 - Mix subkey into result

Security of Rijndael

- Key size is enough
- Immune to linear or differential analysis
- But Rijndael is a very structured cipher
 - S-box consists of byte reciprocals in GF(28)
 - Permutations are regular
- Attack on Rijndael's algebraic structure
 - Breaking can be modeled as equations

Impact of Attacks on Rijndael

- Currently of theoretical interest only
 - Reduces complexity of attack to about 2¹⁰⁰
 - Also applicable to Serpent
- Still, uncomfortably close to feasibility
 - DES is already insecure against brute force
 - Schneier (somewhat arbitrarily) sets limit at 2⁸⁰
- Certainly usable pending further results

Public Key Cryptography

- aka asymmetric cryptography
- Based on some NP-complete problem
 - Unique factorization
 - Discrete logarithms
 - For any b, n, y: Find x such that $b^x \mod n = y$
- Modular arithmetic produces folding

A Short Note on Primes

- Why are public keys (and private keys) so large?
- What is the probability that some large number p is prime?
 - About 1 in 1/ln(p)
 - When p $\sim 2^{512}$, equals about 1 in 355
 - About 1 in 355² numbers ~ 2¹⁰²⁴ is product of two primes (and therefore valid RSA modulo)

RSA

- Rivest, Shamir, Adleman
- Generate two primes: p, q
 - Let n = pq
 - Choose e, a small number, relatively prime to (p-1)(q-1)
 - Choose d such that $ed = 1 \mod (p-1)(q-1)$
- Then, c = me mod n and m = cd mod n

An Example

- Let p = 5, q = 11, e = 3
 - Then n = 55
 - d = 27, since (3)(27) mod 40 = 1
- If m = 7, then c = 7³ mod 55 = 343 mod 55 = 13
- Then m should = 13²⁷ mod 55

An Example

- Computing 13²⁷ mod 55
 - 13¹ mod 55 = 13, 13² mod 55 = 4, 13⁴ mod 55 = 16, 138 mod 55 = 36, 13¹6 mod 55 = 31
 - 13²⁷ mod 55 = (13)(4)(36)(31) mod 55 = (1872 mod 55)(31) mod 55 = 62 mod 55 = 7 (check)

Other Public Cryptosystems

- ElGamal (signature, encryption)
 - Choose a prime p, and two random numbers g, x < p
 - Public key is g, p, and $y = g^x \mod p$
 - Private key is x; to obtain from public key requires extracting discrete log
 - Mostly used for signatures

Other Public Cryptosystems

- Elliptic curve cryptosystems
 - $y^2 = x^3 + ax^2 + bx + c$
 - Continuous elliptic curves used in FLT proof
 - Discrete elliptic curves used to implement existing public-key systems
 - Allow for shorter keys and greater efficiency

Digital Signatures

- Provides data integrity
 - Can be done with symmetric systems
 - Verification requires shared key
 - Doesn't provide non-repudiation
- Need proof of provenance
 - Hash the data, encrypt with *private* key
 - Verification uses public key to decrypt hash
 - Provides non-repudiation

Digital Signatures

- RSA can be used
- DSA: Digital Signature Algorithm
 - Variant of ElGamal signature
 - Adopted as part of DSS by NIST in 1994
 - Slower than RSA (but likely unimportant)
 - NSA had a hand in its design (?!)
 - Key size ranges from 512 to 1024 bits
 - Royalty-free

Key Exchange

- Diffie-Hellman key exchange
 - Choose large prime n, and generator g
 - For any b in (1, n-1), there exists an a such that g^a = b
 - Alice, Bob select secret values x, y, resp
 - Alice sends $X = g^x \mod n$
 - Bob sends $Y = q^y \mod n$
 - Both compute g^{xy} mod n, a shared secret
 - Can be used as keying material

Hash Functions

- Given m, compute H(m)
- Should be...
 - Efficient: H() easy to compute
 - One-way: Given H(m), hard to find m' such that H(m') = H(m)
 - Collision-resistant: Hard to find m and m' such that H(m') = H(m)

Use of Hashes in Signatures

- Reduce input to fixed data size
 - MD5 produces 128 bits
 - SHA1 produces 160 bits
- Encrypt the output using private key
- Why do we need collision-resistance?

Signing Using Only Hashes

- Generate random n₁, n₂, n₃, ...
- Distribute $H(n_1)$, $H(n_2)$, $H(n_3)$, ...
- To authenticate message m_i, release n_i
- Problems
 - Seem to need 2128 or 2160 hashes to sign
 - Need to bootstrap signature
- Resolvable?

Quick Announcements

- Interim place for notes
 - http://www.isi.edu/~brian/csci530/
- Prof Neuman will address D-clearances
- Paper assignment will be introduced in next two weeks