Key Management/Distribution

Administrivia

= Snafu on books
= Probably best to buy it elsewhere

= Paper assignment and first homework
» Next week (9/24)

Cryptography in Use

= Provides foundation for security services

= But can it bootstrap itself?
» Must establish shared key
» Straightforward plan
= One side generates key

= Transmits key to other side
= But how?

Two Problems

= Peer-to-peer key sharing
= Prob 1: Known peer, insecure channel
= Prob 2: Secure channel, unknown peer

Security Through Obscurity?

= Caesar ciphers
» Very simple permutation
» Only 25 different cases

= Relies strictly on no one knowing the
method

Passwords

= Reduces permutation space to key
space

= Caesar cipher: one-letter “key”

= 10-letter key for MSC reduces 26!
(~4x10%9) to ,Cyq (~2x1013)

= 8-byte key for DES reduces 264
(~1010°%) to 25 (~1017)




The Enigma Machine

= Broken first by Polish, then by English
= Not as easily as widely regarded
= Weaknesses in key distribution
= Day keys plus scramblers
» “Session keys” encrypted in duplicate
» Enigma did not use OFB/CFB

Peer-to-Peer Distribution

= Technically easy
= But it doesn't scale
» Hundreds of servers...
» Times thousands of users...
» Yields ~ million keys
= Centralized key server
»« Needham-Schroeder

Basic Idea

= User sends request to KDC: {s}
= KDC generates a random key: K

= Encrypted twice: {K_}K {K.}K,
» Typically called ticket and credentials, resp
» Ticket forwarded with application request

= No keys ever traverse net in the clear

Problem #1

= How does user know session key is
encrypted for the server? And vice
versa?

= Attacker intercepts initial request, and
substitutes own name for server

= Can now read all of user’s messages
intended for server

Solution #1

= Add names to ticket, credentials
= Request looks like {c, s}
- {Kc,sl S}Kc and {Kc,sl C}Ks, resp

= Both sides can verify intended target for
key sharing

= This is basic Needham-Schroeder

Problem #2

= How can user and server know that
session key is fresh?

= Attacker intercepts and records old KDC
reply, then inserts this in response to
future requests

= Can now read all traffic between user and
server




Solution #2

= Add nonces to ticket, credentials
= Request looks like {c, s, n}
- {Kc,sl S, n}Kc and {Kc,sl < n}Ks

= Client can now check that reply made in
response to current request

Problem #3

= User now trusts credentials
= But can server trust user?
= How can server tell this isn't a replay?

= Legitimate user makes electronic
payment to attacker; attacker replays
message to get paid multiple times
» Requires no knowledge of session key

Solution #3

= Add challenge-response
= Server generates second random nonce
= Sends to client, encrypted in session key
= Client must decrypt, decrement, encrypt

= Effective, but adds second round of
messages

Problem #4

= What happens if attacker does get
session key?
» Answer: Can reuse old session key to

answer challenge-response, generate new
requests, etc

Solution #4

= Replace (or supplement) nonce in
request/reply with timestamp [Denning,
Sacco]
= {K & s, N, 3K and {K ,, ¢, n, t}K,, resp
= Also send {t}K, . as authenticator

= Prevents replay without employing second
round of messages as in challenge-response

Problem #5

= Each client request yields new known-
plaintext pairs

= Attacker can sit on the network, harvest
client request and KDC replies




Solution #5

= Introduce Ticket Granting Server (TGS)
= Daily ticket plus session keys
= (How is this different from Enigma?!)
= TGS+AS = KDC
= This is modified Needham-Schroeder
= Basis for Kerberos

Problem #6

= Active attacker can obtain arbitrary
numbers of known-plaintext pairs
= Can then mount dictionary attack at leisure
» Exacerbated by bad password selection

Solution #6

= Preauthentication
= Establish weak authentication for user
before KDC replies
= Examples
= Password-encrypted timestamp
= Hardware authentication
= Single-use key

Public Key Distribution

= Public key can be public!

» How does either side know who and what
the key is for? Private agreement? (Not
scalable.)

= Must delegate trust
»« Why?
» How?

Certification Infrastructures

= Public keys represented by certificates
= Certificates signed by other certificates
= User delegates trust to trusted certificates

= Certificate chains transfer trust up several
links

Examples

= PGP

» “Web of Trust”

» Can model as connected digraph of signers
= X.500

» Hierarchical model: tree (or DAG?)

» (But X.509 certificates use ASN.1!




