CSci530: Computer Security Systems

Authorization

- Final goal of security
 - Determine whether to allow an operation.
- Depends upon
 - Policy
 - Possibly authentication
 - Other characteristics

Administrative

- Plan to have mid-terms available next Wednesday.
- Most proposals replied to. If you do not have a response by tomorrow morning, send a follow-up message to csci530@usc.edu.

The role of policy in security architecture

Policy – Defines what is allowed and how the system and security mechanisms should act.

Enforced By

Mechanism – Provides protection
 - interprets/evaluates
 - firewalls, ID, access control, confidentiality, integrity

Implemented as

Software: which must be implemented correctly and according to sound software engineering principles.

Policy: Review – The Access Matrix

- Policy represented by an Access Matrix
 - Also called Access Control Matrix
 - One row per object
 - One column per subject
 - Tabulates permissions
 - But implemented by:
 - Row – Capability list
 - Column – Access Control List

Policy models: Bell-LaPadula

- Discretionary Policy
 - Based on Access Matrix
- Mandatory Policy
 - Top Secret, Secret, Confidential, Unclassified
 - * Property: S can write O if and only if Level S <= Level O
 - Write UP, Read DOWN
 - Categories treated as levels
 - Form a matrix
 - (more models later in the course)
Security is more than mix of point solutions

- Today’s security tools work with no coordinated policy
 - Firewalls and Virtual Private Networks
 - Authentication and Public Key Infrastructure
 - Intrusion Detection and limited response
- We need better coordination
 - Intrusion response affected at firewalls, VPN’s and Applications
 - Not just who can access what, but policy says what kind of encryption to use, when to notify ID systems.
- Tools should implement coordinated policies
 - Policies originate from multiple sources
 - Policies should adapt to dynamic threat conditions
 - Policies should adapt to dynamic policy changes triggered by activities like September 11th response.

GAA-API: Integration through Authorization

- Focus integration efforts on authorization and the management of policies used in the authorization decision.
 - Not really new - this is a reference monitor.
 - Applications shouldn’t care about authentication or identity.
 - Separate policy from mechanism
 - Authorization may be easier to integrate with applications.
 - Hide the calls to individual security services
 - E.g. key management, authentication, encryption, audit

Generic Authorization and Access-control API

Allows applications to use the security infrastructure to implement security policies.

gaa_get_object_policy_info function called before other GAA API routines which require a handle to object EACL to identify EACLs on which to operate. Can interpret existing policy databases.

gaa_check_authorization function tells application whether requested operation is authorized, or if additional application specific checks are required.

Three Phases of Condition Evaluation

- Discretionary policies associated with objects
 - Read from existing applications or EACLs
 - Local system policies merged with object policies
 - Broadening or narrowing allowed access
- Policies imported from policy/state issuers
 - ID system issues state credentials, These credentials may embed policy as well.
- Policies embedded in credentials
 - These policies attach to user/process credentials and apply to access by only specific processes.
- Policies evaluated remotely
 - Credential issuers (e.g. authentication and authorization servers) evaluate policies to decide which credentials to issue.
Communicating threat conditions

Threat Conditions and New Policies carried in signed certificates
- Added info in authentication credentials
- Threat condition credential signed by ID system

Base conditions require presentation or availability of credential
- Matching the condition brings in additional policy elements.

Integrating security services

The API calls must be made by applications.
- This is a major undertaking, but one which must be done no matter how one chooses to do authorization.

These calls are at the control points in the app
- They occur at auditable events, and this is where records should be generated for ID systems
- They occur at the places where one needs to consider dynamic network threat conditions.
- Adaptive policies use such information from ID systems.
- They occur at the right point for billable events.

Advances Needed in Policy

- Ability to merge & apply policies from many sources
 - Legislated policies
 - Organizational policies
 - Agreed upon constraints
- Integration of Policy Evaluation with Applications
 - So that policies can be uniformly enforced
- Support for Adaptive Policies is Critical
 - Allows response to attack or suspicion
- Policies must manage use of security services
 - What to encrypt, when to sign, what to audit.
 - Hide these details from the application developer.

GAA - Applications and other integration

- Web servers - apache
- Grid services - globus
- Network control – IPsec and firewalls
- Remote login applications – ssh
- Trust management
 - Can call BYU code to negotiate credentials
 - Will eventually guide the negotiation steps

What dynamic policies enable

- Dynamic policy evaluation enables response to attacks:
 - Lockdown system if attack is detected
 - Establish quarantines by changing policy to establish isolated virtual networks dynamically.
 - Allow increased access between coalition members as new coalitions are formed or membership changes to respond to unexpected events.

Demo Scenario - LockDown

- You have an isolated local area network with mixed access to web services (some clients authenticated, some not).
You have an isolated local area network with mixed access to web services (some clients authenticated, some not).
You need to allow incoming authenticated SSH or IPSec connections.

When such connections are active, you want to lock down your servers and require stronger authentication and confidentiality protection on all accesses within the network.

Proxies
- A proxy allows a second principal to operate with the rights and privileges of the principal that issued the proxy
 - Existing authentication credentials
 - Too much privilege and too easily propagated
- Restricted Proxies
 - By placing conditions on the use of proxies, they form the basis of a flexible authorization mechanism

Restricted Proxies
- Two Kinds of proxies
 - Proxy key needed to exercise bearer proxy
 - Restrictions limit use of a delegate proxy
- Restrictions limit authorized operations
 - Individual objects
 - Additional conditions

Policies
- HIPAA, other legislation
- Privacy statements
- Discretionary policies
- Mandatory policies (e.g. classification)
- Business policies

Mechanisms
- Access Matrix
 - Access Control List
 - Capability list
- Unix file system
- Andrew file system
- SSH authorized key files
- Restricted proxies, extended certificates
- Group membership
- Payment
Summary

- Policies naturally originate in multiple places.
- Deployment of secure systems requires coordination of policy across countermeasures.
- Effective response requires support for dynamic policy evaluation.
- Such policies can coordinated the collection of data used as input for subsequent attack analysis.