Authorization

- Determining permission
 - Is principal P permitted to perform action A on object U?
- Adding permission
 - P is now permitted to perform action A on object U
- In this course, we use the first sense

Access Control

- Who is permitted to perform which actions on what objects?
- Access Control Matrix (ACM)
 - Columns indexed by principal
 - Rows indexed by objects
 - Elements are arrays of permissions indexed by action
- In practice, ACMs are abstract objects

Instantiations of ACMs

- Access Control Lists (ACLs)
 - For each object, list principals and actions permitted on that object
 - Corresponds to rows of ACM
 - Example: Kerberos admin system

Problems

- Permissions may need to be determined dynamically
 - Time
 - System load
 - Relationship with other objects
 - Security status of host

Instantiations of ACMs

- Capabilities
 - For each principal, list objects and actions permitted for that principal
 - Corresponds to columns of ACM
 - Example: Kerberos restricted proxies
 - The Unix file system is an example of...?
Problems

- Distributed nature of systems may aggravate this
 - ACLs need to be replicated or centralized
 - Capabilities don’t, but they’re harder to revoke
- Approaches
 - GAA
 - Agent-based authorization

Agent-Based Authorization

- When object created on a host H, agent Q created along with it
- Agents distributed to clients
 - Either directly, or through agent server
- Client on host G instantiates agent for principal P, submits it to H as Q/P@G

Agent-Based Authorization

- Relieves scaling issues with ACLs
- Q is typically mobile code and data
 - Needs to be integrity-protected
 - May be confidentiality-protected
 - Agent environment on H must be trusted

Revocation in Agent-Based Systems

- Timeout-based
- Harder for malicious agents
 - Hosts must send RCLs to other hosts and/or principals
 - Must maintain their own RCL to restrict or deny incoming agents