CSci530: Computer Security Systems Intrusion Detection 5 November 2003

Dr. Clifford Neuman University of Southern California Information Sciences Institute

--- UNIVERSITY OF SOUTHERN CALIFORNIA INFORMATION SCIENC

Administrative

- All proposals replied to. If you do not have a response send a follow-up message to <u>csci530@usc.edu</u>.
- End-of-term exam on last regular lecture day.
- Research paper officially due the same day, but no penalty if turned in up to one week late.
- Out of town Friday, see me after class if you would otherwise need to meet me during my Friday office hours.

INTERSITY OF SOUTHERN CALIFORNIA. DEORMATION SCIENCES

Intrusion Detection

- Security Enforcement Mechanisms are not foolproof, so we need a way of knowing when they are not working.
 - -Or even better, before they stop working
- We need ways to detect insider misuse

Taxonomy for Intrusion Detection

- · What is detected
 - Signature based approaches
 - Anomaly detection
- Where detected
 - Network Based
 - Host Based
 - Application Based
- · When attack is detected
 - Real time
 - After the fact

Basis for detecting attack

- · Systems operating normally
 - Activity conforms to statistically predictable patterns.
 - Actions do not include attempts to subvert policy.
 - Actions of processes conform to the policies regarding what they are allowed to do.

Rating ID systems

- · False positives
 - Normal activity flagged as intrusion
 Affects adminstrator workload
 - Affects administrator working
- E.g. spam filtering
- False Negatives
 - -Attacks that are not detected

Anomaly Detection

- How it works
 - Analyze baseline characteristics of system or user behavior and record.
 - Compare current characteristics and behavior against baseline.
 - Flag differences

---- UNIVERSITY OF SOUTHERN CALIFORNIA DEORMATION SCIENCES

- Why it is hard
 - Deciding how to characterize behavior so that changes reflect intrusions and not normal changes in activities.

Metrics

- Threshold metrics
 - -Number of failed access attempts.
 - Bandwidth consumed.
- State change probabilities (Markov models)

- Requires training by analyzing normal traces
- Looking for transitions that don't seem to follow the normal pattern

Misuse detection

Whether activities or code is violate site policy.

- Rule based
- Signature based.
- Problems
 - Can only detect attacks known in advance.
 - Virus checkers are usually signature based.
 - Many more false negatives (subject to
 - definition)
- Strengths
- Tend to have fewer false positives.
- © 1995-2003 Clifford Neuman UNIVERSITY OF SOUTHERN CALIFORNIA INFORMATION SCIENCES INSTITUTE

Collecting Input Data

- Audit vs. Intrusion Detection
- Network Based ID
- Host Based ID
- Application based ID

Network Based ID

- · Often based on network sniffing
 - Listening to network traffic as it goes by a sensor node
 - Could be placed in routers or other network components
 - -lssues?
 - Placement
 - Load
 - Encrypted traffic
 - Determining intent
 - rd Neuman UNIVERSITY OF SOUTHERN CALIFORNIA INFORMATION SCIENCES INST

Host Based ID

- · Scan system and application logs
- · Report on system state
- Report activity to ID system
- Issues
 - Only get what applications already put into logs
 - Might not understand the intent of an action.

Application Based ID

- Application determines what to report to ID system.
- Based on a policy
- Drawbacks
 - Requires application involvement. Some applications will not report.
 - Authorization functions like GAA-API can help address this limitation.
- Benefits
 - Application understands the objects and entities to which policies apply.
- © 1995-2003 Clifford Neuman UNIVERSITY OF SOUTHERN CALIFORNIA INFORMATION SCIENCES INSI

Issues in Intrusion Detection

- Collecting data on and reporting events

 Languages, e.g. CIDF
 - Dr. Tung will talk about in his lectures.
- Reducing Data
 - To reduce network traffic consumed
 - Consider overhead
 - Summarize data
 - Finding relationships

Components of ID systems

- Collectors
 - -Gather raw data
- Director
 - Reduces incoming traffic and finds relationships
- Notifier
 - Accepts data from director and takes appropriate action

Advanced IDS models

- Distributed Ditection
 - Combining host and netwror monitoring (DIDS)
 - Autonomous agents (Crosbie and Spafford)

Intrusion Response

- Intrusion Prevention
 - -(marketing buzzword)
- Intrusion Response
- How to react when an intrusion is detected

Possible Responses

- -Notify administrator
- System or network lockdown
- Place attacker in controlled environment

- -Slow the system for offending processes
- -Kill the process

Phase of Response (Bishop)

– Preparation

- -Identification
- Containment
- Eradication
- -Recovery
- -Follow up

PREPARATION Generate baseline for system - Checksums of binaries - For use by systems like tripwire Oevelop procedures to follow Maintain backups

IDENTIFICATION

- This is the role of the ID system
 - Detect attack
 - Characterize attack
 - Try to assess motives of attack
 - Determine what has been affected

CONTAINMENT

- Passive monitoring
 - To learn intent of attacker
 - Learn new attack modes so one can defend against them later
- Constraining access
 - Locking down system
 - Closing connections
 - Blocking at firewall, or closer to source
- Combination
 - Constrain activities, but don't let attack know one is doing so (Honeypots, Jail).

1995-2603 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE

ERADICATION

- Prevent attack or effects of attack from reoccuring.
 - Locking down system (also in containment phase)
 - Blocking connections at firewall
 - Isolate potential targets

RECOVERY

- Restore system to safe state
- Check all software for backdoors
- -Recover data from backup

FOLLOWUP

- Take action against attacker. – Find origin of attack
- Notify other affected parties

 Some of this occurs in earlier phases as well
- Assess what went wrong and correct procedures.
- Find buggy software that was exploited and fix

ht © 1995-2003 Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE