Collaborative Intrusion Detection and Response

Limitations of Monolithic ID
- Single point of failure
- Limited access to data sources
- Only one perspective on transactions
- Some attacks are inherently distributed
 - Smurf
 - DDoS
- Conclusion: "Complete solutions" aren't

Sharing Information
- Benefits
 - Increased robustness
 - More information for all components
 - Broader perspective on attacks
 - Capture distributed attacks
- Risks
 - Eavesdroppers, compromised components

Sharing Information
- Communication risks can be resolved cryptographically (at least in part)
- Defining appropriate level of expression
 - Efficiency
 - Expressivity
 - Specificity

CIDF
- Common Intrusion Detection Framework
 - Collaborative work of DARPA-funded projects in late 1990s
 - Task: Define language, protocols to exchange information about attacks and responses

CISL
- Common Intrusion Specification Language
 - Conveys information about attacks using ordinary English words
 - E.g., User joe obtains root access on demon.example.com at 2003 Jun 12 14:15 PDT
CISL
- Problem: Parsing English is hard
- S-expressions (Rivest)
 - Lisp-like grouping using parentheses
 - Simplest examples: (name value) pairs
 - (Username "Joe")
 - (Hostname "demon.example.com")
 - (Date "2003 Jun 12 14:15 PDT")
 - (Action obtainRootAccess)

CISL: Roles
- Clarifies roles identified by descriptors
 - (Attacker)
 - (Username "Joe")
 - (Hostname "carton.example.com")
 - (RoleID 501)
 - (Target)
 - (Hostname "demon.example.com")

CISL: Verbs
- Permit generic description of actions
 - (Compromise)
 - (Attacker "...")
 - (Observer)
 - (Date "2003 Jun 12 14:15 PDT")
 - (ProgramName "GRIDSDetector")
 - (Target "...")

CISL: Conjunctions
- Permit expression of compound events
 - HelpCause: Indicates partial causality
 - InOrder: Indicates sequencing
 - AsAwayOf: Indicates multiple views of the same attack

CISL: Open S-expressions
- Lambda calculus-like macros
 - (def CompromiseHost $1 $2 $3)
 - (Compromise)
 - (Attacker (Username "$1"))
 - (Target (Hostname "$2"))
 - (Observer (Date "$3"))
 -)}
CISL: Open S-expressions

- Originally defined to reduce payload
- Also usable for database queries
 - Look for all records matching 'Compromisehost'
 - Difficulty: Store expanded form or macro form in database?

Testing CISL

- CISL is expressive, leading to questions
 - Is it ambiguous?
 - Does a given GIDO have more than one interpretation?
 - Is it overbuilt?
 - Is there more than one GIDO that expresses the same thing (aside from reordering)?

Testing CISL

- GIDO Bake-offs
 - June 1999: Demonstration of simple corroboration
 - October 2000: Semantic testing
 - Group A: Devised scenarios/questions
 - Group B: Only knows scenarios, creates GIDOs
 - Group C: Only knows questions, receives GIDOs
 - Three levels: Easy, medium, gnarly

Lessons from CISL

- Lessons from testing, standardization efforts
 - Heavyweight
 - Not ambiguous, but too many ways to say the same thing
 - Mismatch between what CISL can say and what detectors/analysts can reliably know

Enter IDWG

- Intrusion Detection Working Group
 - WG of Internet Engineering Task Force
 - Chief product: IDMEF
 - Intrusion Detection Message Exchange Format
 - Driven by many CIDF participants

IDMEF

- XML-based; defines DTD for ID
- Reduced vocabulary
 - Roles reduced to analyzer (observer), source, target
 - Extra information for identifying exploits, buffer overflows
 - Provision for indicating that previous alerts are related
 - No provision for response prescriptions
IDWG Status

- IDMEF (and other IDWG drafts)
 - Submitted to IESG for advancement to IETF Draft Standard (as standards-track RFC)