What Is Security

- What are you trying to secure?
 - system
 - network
 - data

- How to evaluate
 - can be difficult
 - what are the costs?
 - hardware & software
 - administration/management
 - balance costs to protect with costs of compromise
 - balance costs to compromise with benefit to attacker

- Security vs. Risk Management
 - (cont...)

What Is Security (Cont...)

- Security vs. Risk Management (cont...)
 - prevent successful attacks vs. mitigate the consequences
 - an example of Risk Management: banks
 - difficult to defend against losses from robbery, credit card fraud, identify theft
 - solution: charge fees, understand costs, buy insurance

- It’s not all technical

What Do We Want From Security

- Protection
 - enforced by hardware
 - virtual memory system
 - user/kernel modes, rings 0-3, etc.
 - no stepping around, no I/O accesses
 - depends on trusted kernel

- Authentication
 - determining identity of principal
 - a principal can be a process or a user
 - can use an access matrix to specify what subjects can access what objects

- Integrity
 - (cont...)

What Do We Want From Security (Cont...)

- Integrity
 - authenticity of document
 - that it hasn’t changes

- Confidentiality
 - that inappropriate information is not disclosed

- Availability
 - that the system continues to operate
 - that the system and data is reachable and readable

- Enforcement of policies
 - privacy
 - accountability and audit
 - payment

What Makes Up Security

- Basic services:
 - Authentication
 - Authorization
 - Accounting (e.g., quota)
 - Audit
 - Assurance (e.g., software engineering, virus checkers)
 - Payment
 - Protection
 - Policy
 - rules about who can do what, at what cost
 - generally hard to define for an organization
 - Privacy (policy about individual)
 - Confidentiality (about data)
Security Weaknesses & Why We Are Not Secure

- Buggy code
 - buffer overrun
 - never use strcpy(), use strncpy() and memcpy()
 - always check return code of library functions and system calls
- Protocols design failures
 - unspecified patterns
 - holes in the spec?
- Weak crypto
 - it is usually a good idea to use well understood ones
- "Social engineering"
 - (cont...)

Security Weaknesses (Cont...)

- "Social engineering"
 - failure in people?
 - plenty of bad people out there (and inside)
- Misconfiguration
 - systems should be shipped in secure mode (not open mode)
 - unfortunately, this is usually against what vendors want
- Incorrect policy specification
 - Stolen keys or identities
 - weak key management
 - single sign-on feature (put password on local disk)
- Denial of service
 - hard to defend against

Security Mechanisms

- Encryption
 - scrambling of data for confidentiality and integrity
- Checksums
- Key management
 - e.g., Kerberos, X.509
- Authentication
 - e.g., Kerberos, X.509
- Authorization
 - ACL (access control list)
- Accounting
- Firewalls

Security Mechanisms (Cont...)

- VPNS
 - interconnecting private nets over the Internet
- Intrusion detection and response
 - audit
 - push back authorization & firewall
- Development tools
- Virus scanners
- Policy managers
- Trusted hardware

Today’s Security Deployment

- Most of the deployment of security services today handles the easy stuff, implementing security at a single point in the network, or at a single layer in the protocol stack:
 - firewalls, VPN's
 - IPSec
 - SSL
- Unfortunately, security isn’t that easy. It must be better integrated with the application
 - at the level at which it must ultimately be specified, security policies pertain to application level objects, and identify application level entities (users)