CS530 Cryptography

Bill Cheng

http://merlot.usc.edu/cs530-s10

Copyright © William C. Cheng

Cryptography \& Security

Cryptography underlies many fundamental services

- Confidentiality
- Data integrity
- Authentication
\Rightarrow
Cryptography is the basic foundation of much of security

A Brief History

Steganography: "covered writing" $=$ Demaratus (5th century B.C.)
o writing under wax on tablets

- German microdots (WWII)
- crucial flaw: Discovery yields knowledge
- confidentiality through obscurity
- covert channels
- Ex: timing channelCryptography: "secret writing" - TASOIINRNPSTO and TVCTUJUVUJPO

Copyright © William C. Chang

A Brief History (Cont...)

Two basic types of cryptography

- Transposition (TASOIINRNPSTO) or permutation
- message broken up into units
o units permuted in a seemingly random but reversible manner
- Ex: wrap tape on rod
- difficult to make it easily reversible only by intended receiver
- exhibits same first-order (or mono-gram) statistics (but distort di-grams, tri-grams, etc.)
- Substitution (TVCTUJUVUJPO)
- (cont...)

Copyright © William C. Cheng

A Brief History (Cont...)

- Substitution (TVCTUJUVUJPO)
- message broken up into units
- units mapped into ciphertext
- Ex: Caesar cipher
- first-order statistics are isomorphic in simplest cases
\diamond note: for transposition, first-order statistics are identical
- predominant form of encryption

How Much Security?

Monoalphabetic substitution cipher
$=$ permutation on message units: letters

- 26! different permutations

ص each permutation considered a key

- key space contains $26!=4 \times 10^{26}$ keys
- equal to number of atoms in a gallon of water

○ equivalent to a 88-bit key (more than DES!)
\Rightarrow
So why not use substitution ciphers?

- hard to remember 26-letter keys

O but we can restrict ourselves to shorter keys

- Ex: JULISCAERBDFGHKM, etc.
$=$ remember: first-order statistics are isomorphic
- vulnerable to simple cryptanalysis

Copyright © William C. Cheng

1964 English Language Statistics

frequency of single characters in English text

\Rightarrow frequency of 15 common digrams in English text (27\% overall)

Copyright © William C. Cheng

Substitution Ciphers

\square
Two basic types

- symmetric-key or conventional
o single key used for both encryption and decryption
- keys are typically short, because key space is densely filled
○ Ex: DES, 3DES, RC4, Blowfish, IDEA, etc
- public-key or asymmetric
o two keys: one for encryption, one for decryption
o keys are typically long, because key space is sparsely filled
- Ex: RSA, El Gamal, DSA, etc

Conventional Cryptography

Stream cipher

- stream cipher: generates a (random or pseudorandom) keystream and applies it to a stream of plaintext with XOR
- good for applications such as telnet
- Ex: RC4
= one-time pad: if the keystream is truely randomly chosen and never used again, the stream cipher is a one-time pad
o the one-time pad can be shown to be theoretically unbreakable

Copyright © William C. Cheng

RC4

```
/* state information */
static uns8 state[256], x, y;
void rc4init(uns8 *key,
            uns16 length)
    /* initialization */
{
    int i;
    uns8 t, j, k=0;
    for (i=256; i--; ) state[i] = i; uns8 t;
    for (i=0, j=0; t = state[y += state[++x]];
            i < 256;
            i++, j=(j+1)%length) {
        t = state[i];
        state[i] = return state[
            state[k+= key[j] + t];
        state[k] = t;
    }
    x = y = 0;
}
Copyright © William C. Cheng
```

```
uns8 rc4step()
```

uns8 rc4step()
/*
/*
* return next
* return next
* pseudo-random
* pseudo-random
* octet
* octet
*/
*/
state[y] = state[x];
state[y] = state[x];
state[x] = t;
state[x] = t;
state[x]+state[y]
state[x]+state[y]
];
];
}

```
}
```


RC4 (Cont...)

\Rightarrow
To generate a random byte, do:

```
i := 0
j := 0
while GeneratingOutput:
            i := (i + 1) mod 256
            j := (j + S[i]) mod 256
            swap(S[i],S[j])
            output S[(S[i] + S[j]) mod 256]
```

Key scheduling algorithm:

```
for i from O to 255
            S[i] := i
    j := 0
    for i from O to 255
    j := (j + S[i] + key[i mod l]) mod 256
    swap(S[i],S[j])
```

Copyright © William C. Chang

Conventional Cryptography (Cont...)

Block ciphers encrypt message in units called blocks
$=$ DES: 8-byte key (56 key bits), 8-byte block

- $2^{56} \approx 10^{17}$

Note: $2^{56}=10^{x}$
$56 \log 2=X \log 10$
X = $56 \log 2 / \log 10$

- larger blocks make simple cryptanalysis useless (at least for short messages)
o not enough samples for valid statistics
- "octo-gram statistics needed"

Key and Block Size

\square
Do larger keys make sense for an 8-byte block?
$=$ 3DES: Key is 112 or 168 bits, but block is still 8 bytes long (64 bits)

- key space is larger than block space
- Q: how many possible keys are out there?
- A: equal to the size of the permultation space
- why?
o each key can be think of as a way to map an input pattern to an output pattern
- Q: how many different patterns are there?
- A: 2^{64}
- remember, must be one-to-one mapping
- but how large is permutation space?
- $2^{64}!=$?
o use Stirling's Formula: $n!\approx n^{n} e^{-n} \sqrt{2 \pi n}$
Copyright © William C. Cheng

CS530 Cryptanalysis

Bill Cheng

http://merlot.usc.edu/cs530-s10

Copyright © William C. Cheng

Cryptanalysis

\Rightarrow
Cryptanalysis is the study of mathematical techniques for attempting to defeat cryptographic techniques and information security services

- a cryptanalyst is someone who engages in cryptanalysis
\Rightarrow
Cryptology is the study of cryptography and cryptanalysis
\Rightarrow
Six general types of cryptanalytic attacks:
- ciphertext-only attack
- knwon-plaintext attack
- chosen-plaintext attack
- adaptive-chosen-plaintext attack
- chosen-ciphertext attack
- adaptive-chosen-ciphertext attack

Another type of cryptanalytic attack
bo purchase-key attack
Copyright © William C. Cheng

Cryptanalytic Attacks

Ciphertext-only attack
= given ciphertexts

- deduce plaintexts (or key)Known-plaintext attack
- given plaintext-ciphertext pairs
- deduce keyChosen-plaintext attack
- the cryptanalyst has access to the encryption device
- given plaintext \rightarrow ciphertext pairs of the attacker's choosing
- deduce key
\Rightarrow
Adaptive-chosen-plaintext attack
- special case of a chosen-plaintext attack
- the cryptanalyst can modify his choice based on the result of previous encryption
Copyright © William C. Cheng

Cryptanalytic Attacks (Cont...)

Chosen-ciphertext attack- the cryptanalyst has access to the decryption device
- given ciphertext \rightarrow plaintext pairs of the attacker's choosing
- deduce key
\square
Adaptive-chosen-ciphertext attack
- special case of a chosen-ciphertext attack
- the cryptanalyst can modify his choice based on the result of previous decryption
\Rightarrow Rubber-hose cryptanalysis (or purchase-key attack)
- the cryptanalyst threatens, blackmails, or tortures someone until they give him the key
- often the best way to break an algorithm!

Copyright © William C. Cheng

Attack on Protocols

\Rightarrow
Until a protocol is proven to provide the service intended, the list of possible attacks can never be said to be complete

- known-key attack: an adversary obtains some keys used previously to determine new keys
- replay attack: an adversary records a communication session and replays the entire session, or a portion thereof, at some later point in time
- impersonation attack: an adversary assumes the identity of one of the legitimate parties in a network
- dictionary attack:
- usually an attack against passwords
- password is stored as image of unkeyed hash function
- an adversary takes a list of possible passwords, hash all entries and compare with stored hash values

Copyright © William C. Cheng

Attack on Protocols (Cont...)

- forward search attack: similar to the dictionary attack and is used to decrypt messages
= interleaving attack: involves some form of impersonation in an authentication protocol
- A and B executes a security protocol
- an adversary intercepts all messages and sends its own messages
\rangle man-in-the-middle attack

Finding Ethernet Address: Address Resolution (ARP)

Man-in-the-middle Attack

ARP weaknesses

- accept additional ARP responses even if an ARP response has already been received
o overwrite cached ARP value
- accept ARP response even if no ARP request
- fixes for this exist, but often not implemented or installed
\Rightarrow
Man-in-the-middle attack
- an attacker on LAN and send an ARP response to a host H to impersonate the gateway G
O and tells \mathbf{G} that its ethernet address is that of H
= now the attacker can intercept and modify any packet that goes between H and G

Copyright © William C. Cheng

CS530 DES

Bill Cheng

http://merlot.usc.edu/cs530-s10

Copyright © William C. Cheng

Anatomy Of A Block Cipher

DES: Data Encryption Standard

- developed as Lucifer (one of a few) at IBM in 1970s
- break message into 8-byte (64-bit) blocks
- each block broken into 32-bit halves
- initial permutation
- 16 rounds of scrambling
- final (reverse) permutation
- Feistel Network structure

The Scrambling Function

\Rightarrow In each round i, we have L_{i} and R_{i}
$=L_{i+1}=R_{i} \leftarrow$ typical of Feistel networks
$=R_{i+1}=L_{i} \oplus f\left(R_{i}\right)$
\Rightarrow
f-function

- key is compressed and permuted to 48 bits (called subkeys, different for each round)
- R_{i} (32-bits) is expanded and permuted to 48 bits

- 48 bits XOR'd, passed through S-boxes (to produce 32 bits), then permuted again
- irreversible

Feistel Network

Decryption

- f only used in only one direction for both encryption and decryption
Copyright © William C. Cheng

Key Compression

Reduction to 56 bits (no parity bits)
DES key (64 bits);
Broken into halves

- each half is rotated by 1 or 2 bits
- 48 bits out of 56 selectedWhy do this?
- use a different set of bits for each round
- not exactly symmetric

Data Expansion

\Rightarrow Data broken into 4-bit groups
\Rightarrow Each group expanded to 6 bits
\measuredangle Why do this?

- match subkey length
- data diffusion occurs faster

Substitution Boxes (S-Boxes)

This is the heart of DES\square
48 bit result broken into 6-bit units
\Rightarrow
Each unit passed through an S-box

- 6-bit input, 4-bit output
- each S-box is a 4×16 array of 4-bit numbers
= bl and b6 specify row, b2 through bs specify column
\Rightarrow
End result passed through P-box

DES Properties

\Rightarrow
Desirable characteristics for a block cipher
= each bit of the ciphertext should depend on all bits of the key and all bits of the plaintext

- there should be no statistical relationship evident between plaintext and ciphertext
乞 altering any single plaintext or key bit should alter each ciphertext bit with probability $1 / 2$
- altering a ciphertext bit should result in unpredictable change to the recovered plaintext blockEmpirically, DES satisfies all the above objectives

DES Weak Keys

If generated subkeys are such that $k_{1}=k_{16}, k_{2}=k_{15}$, and so on, the encryption and decryption functions coincide
$=$ these are called weak keys (and also palindromic keys)
0 if K is a weak key, then $E_{K}\left(E_{K}(x)\right)=x$ for all x
\Rightarrow DES also has semi-weak keys

- if $\left(\mathrm{K}_{1}, \mathrm{~K}_{2}\right)$ is pair of semi-weak keys, then $E_{K_{1}}\left(E_{K_{2}}(x)\right)=x$ for all x
DES has 4 weak keys and 6 pairs of semi-weak keys

weak keys (hexadecimal)			
0101	0101	0101	0101
$F E F E$			
$1 F 1 F$			
$E O E O$	$E 0 E O$	$E O E O$	$E O E O$

Copyright © William C. Chang

Modes of DES Operation

\Rightarrow
What to do if message is longer than 8 bytes?
\Rightarrow
Electronic Codebook (ECB)

- each block encrypted in isolation
- vulnerable to block replay (same input \Rightarrow same output)

\Rightarrow Cipher Block Chaining (CBC)
- each plaintext block XOR'd with previous ciphertext before encryption
- easily incorporated into decryption
- what if prefix is always the same? IV!

Copyright © William C. Cheng

Cipher Block Chaining (CBC)

Copyright © William C. Cheng

Modes of DES Operation (Cont...)

Stream cipher

- stream cipher: generates a (random or pseudorandom) keystream and applies it to a stream of plaintext with XOR
- one-time pad: if the keystream is truely randomly chosen and never used again, the stream cipher is a one-time pad
\Rightarrow Cipher Feedback (CFB)
- for encrypting character-at-a-time (or less)
- chains as in CBC
- also needs an IV
- must be unique
\Rightarrow Output Feedback (OFB)
- like CFB, but some bits of output fed back into input stream

Copyright © William C. Cheng

OFB vs CFB

\Rightarrow OFB (simplified): $v_{i}=E\left(k, v_{i-1}\right)$ and $c_{i}=m_{i} \oplus v_{i}$

\Rightarrow CFB (simplified): $c_{i}=m_{i} \oplus E\left(k, c_{i-1}\right)$

OFB vs CFB (Cont...)

\Rightarrow OFB (simplified)

Alternate view:

DES Variants and Applications

Crypt: Unix hash function for passwords
= uses variable expansion permutations

- add a 12-bit salt (to modify DES)
- to mitigate the precomputed dictionary attack
- encrypt the number 0
\Rightarrow DES with key-dependent S-boxes
- cannot be done blindly

Variants and Applications (Cont...)

3DES: Encrypt using DES 3x

- two and three-key types
encryption:

decryption:

- inner and outer-CBC modes

CBC on the outside:

Variants and Applications (Cont...)

- inner and outer-CBC modes (cont...)

CBC on the inside:

Variants and Applications (Cont...)

3DES (cont...)

- inner-CBC mode for 3DES is more efficient, but less secure
- more efficient because of possible pipelining
- under some attacks inner-CBC mode is significantly weaker than outer-CBC mode; against other attacks based on block size, inner-CBC mode appears stronger (please note that this is different from what the textbook says)
- main reason for EDE is backwards compatibility with single-key DES
\Rightarrow Why not 2DES? (EE, DE, or ED)
- (cont...)

Copyright © William C. Cheng

Variants and Applications (Cont...)

Why not 2DES? (EE, DE, or ED)
= turns out 2DES is not much more secure than DES

- meet-in-the-middle attack

Attacks on DES

No known systematic attack (for 16 rounds) = is DES "closed" (that is, a group)?

O does there exist a K_{3} such that $E_{K_{1}}\left(E_{K_{2}}(P)\right)=E_{K_{3}}(P)$
O if it were, double encryption would be useless

- DES is not closed
- is DES "pure"?

O does there exist a K_{4} such that $E_{K_{1}}\left(E_{K_{2}}\left(E_{K_{3}}(P)\right)\right)=E_{K_{4}}(P)$
O if it were, triple encryption would be useless
o unfortunately, don't know if DES is pure
= does DES has a skeleton/allpass key?

- not likely because DES is symmetric
\Rightarrow Brute force attacks only
- try all 2^{56} keys!

Copyright © William C. Chang

Lucifer Goes Standard

\Rightarrow Lucifer is one of the IBM ciphers
$=$ generally regarded in 1970s as one of the strongest cryptosystems
\Rightarrow Heading toward standardization as DES

- NSA managed to get key size reduced to 56 bits (from 64), yielding 10^{17} keys
- also apparently changed S-boxes
- why (or why not) do this?
- NSA does not trust IBM
- who trusts NSA?

Copyright © William C. Cheng

Certification of DES

Had to be recertified every ~5 years

- 1983: Recertified routinely
- 1987: Recertified after NSA tried to promote secret replacement algorithms
- withdrawal would mean lack of protection
- lots of systems then using DES
- 1993: Recertified after continued lack of alternative

CS530 AES

Bill Cheng

http://merlot.usc.edu/cs530-s10

Copyright © William C. Cheng

Enter AES

1998: NIST finally refuses to recertify DES

- 1997: Call for candidates for Advanced Encryption Standard (AES)
- fifteen candidates whittled down to five
- criteria: Security, but also efficiency
= compare Rijndael with Serpent (which is generally regarded as more secure but less efficient)
- 2000: Rijndael selected as AES

Structure of Rijndael

\Rightarrow
Unlike DES, operates on whole bytes for efficiency of software implementationsKey sizes: 128/192/256 bits
\Rightarrow
Variable rounds: 9/11/13 rounds
\Rightarrow Rounds are not Feistel networks
\Rightarrow Round structure

- run block through S-box (8x32)
- permute result into $4 \times 4 / 4 \times 6 / 4 \times 8$ array of bytes
- multiply each byte by 1,2 , or 3 in $\operatorname{GF}\left(2^{8}\right)$
- addition in $\operatorname{GF}\left(2^{8}\right)$ is done through XOR
- mix subkey into result

Security of Rijndael

\Rightarrow Based on arithmatic in $\operatorname{GF}\left(2^{8}\right)$
\Rightarrow Key size is enough
\Rightarrow Immune to linear or differential analysis
\Rightarrow But Rijndael is a very structured cipher - S-box consists of byte reciprocals in $\mathrm{GF}\left(2^{8}\right)$

- finite field $Z_{2}[x] /\left(x^{8}+x^{4}+x^{3}+x+1\right)$
$=$ permutations are regular
\Rightarrow Attack on Rijndael's algebraic structure
- breaking can be modeled as equations
- only need to know a single plaintext/cipher text pair
- ~8,000 quadratic equations with $\sim 1,600$ variables (also in GF(2^{8}))

Copyright © William C. Cheng

Impact of Attacks on Rijndael

Currently of theoretical interest only$=$ reduces complexity of attack to about 2^{100} (after the system of quadratic equations are solved)

- also applicable to Serpent (complexity is about 2^{200})
\square
Still, uncomfortably close to feasibility
- DES is already insecure against brute force
$=$ Schneier (somewhat arbitrarily) sets limit at 2^{80}
\Rightarrow Certainly usable pending further results

Copyright © William C. Cheng

