

🛏 Copyright © William C. Cheng

Cryptography & Security

Cryptography underlies many fundamental services

- **–** Confidentiality
- **—** Data integrity
- Authentication

Cryptography is the basic foundation of much of security

A Brief History (Cont...)

Two basic types of cryptography

- *Transposition* (TASOIINRNPSTO) or permutation
 - message broken up into units
 - units permuted in a seemingly random but reversible manner
 - Ex: wrap tape on rod
 - difficult to make it easily reversible only by intended receiver
 - exhibits same first-order (or mono-gram) statistics (but distort di-grams, tri-grams, etc.)
- **Substitution** (TVCTUJUVUJPO)
 - (cont...)

A Brief History (Cont...)

- Substitution (TVCTUJUVUJPO)
 - message broken up into units
 - units mapped into ciphertext
 - Ex: Caesar cipher
 - first-order statistics are isomorphic in simplest cases
 - note: for transposition, first-order statistics are identical
 - o predominant form of encryption

How Much Security?

Monoalphabetic substitution cipher

- permutation on message units: letters
- **26!** different permutations
- each permutation considered a key
- key space contains $26! = 4 \times 10^{26}$ keys
 - equal to number of atoms in a gallon of water
 - equivalent to a 88-bit key (more than DES!)

So why not use substitution ciphers?

- hard to remember 26-letter keys
 - but we can restrict ourselves to shorter keys
 - Ex: JULISCAERBDFGHKM, etc.
- remember: first-order statistics are isomorphic
 - vulnerable to simple cryptanalysis

Substitution Ciphers

Two basic types

- symmetric-key or conventional

- single key used for both encryption and decryption
- keys are typically short, because key space is densely filled

• Ex: DES, 3DES, RC4, Blowfish, IDEA, etc

- *public-key* or asymmetric

- two keys: one for encryption, one for decryption
- keys are typically long, because key space is sparsely filled

• Ex: RSA, El Gamal, DSA, etc

Conventional Cryptography

Stream cipher

- stream cipher: generates a (random or pseudorandom) keystream and applies it to a stream of plaintext with XOR
 - good for applications such as telnet
 - Ex: RC4
- one-time pad: if the keystream is truely randomly chosen and never used again, the stream cipher is a one-time pad
 - the one-time pad can be shown to be *theoretically* unbreakable


```
CSCI 530, Spring 2010 -
                               RC4
/* state information */
static uns8 state[256], x, y;
                                    uns8 rc4step()
void rc4init(uns8 *key,
                                         /*
        uns16 length)
                                          * return next
    /* initialization */
                                          * pseudo-random
{
                                          * octet
    int i;
                                          */
    uns8 t, j, k=0;
    for (i=256; i--; ) state[i] = i; uns8 t;
                                         t = state[y += state[++x]];
    for (i=0, j=0;
             i < 256;
                                         state[y] = state[x];
                                         state[x] = t;
             i++, j=(j+1)%length) {
        t = state[i];
                                         return state[
        state[i] =
                                              state[x]+state[y]
             state[k+= key[j] + t];
                                         ];
        state[k] = t;
    x = y = 0;
}
Copyright © William C. Cheng -
```


Copyright © William C. Cheng

Key and Block Size

> Do larger keys make sense for an 8-byte block?

- 3DES: Key is 112 or 168 bits, but block is still 8 bytes long (64 bits)
- key space is larger than block space
- Q: how many possible keys are out there?
- A: equal to the size of the *permultation space*
- why?
 - each key can be think of as a way to map an input pattern to an output pattern
 - Q: how many different patterns are there?
 - A: 2⁶⁴
 - remember, must be one-to-one mapping
- but how large is permutation space?
 - $2^{64}! = ?$

• use Stirling's Formula: $n! pprox n^n e^{-n} \sqrt{2\pi n}$

🛏 Copyright © William C. Cheng

Copyright © William C. Cheng

Cryptanalysis

Cryptanalysis is the study of mathematical techniques for attempting to defeat cryptographic techniques and information security services

- a *cryptanalyst* is someone who engages in cryptanalysis

Cryptology is the study of cryptography and cryptanalysis

- Six general types of cryptanalytic attacks:
 - ciphertext-only attack
 - knwon-plaintext attack
- chosen-plaintext attack
- adaptive-chosen-plaintext attack
- chosen-ciphertext attack
- adaptive-chosen-ciphertext attack

Another type of cryptanalytic attack

Copyright © William C. Cheng

Cryptanalytic Attacks

Ciphertext-only attack

- given ciphertexts
- deduce plaintexts (or key)

Known-plaintext attack

- given plaintext-ciphertext pairs
- deduce key

Chosen-plaintext attack

- the cryptanalyst has access to the *encryption* device
- given plaintext—ciphertext pairs of the attacker's choosing
- deduce key

Adaptive-chosen-plaintext attack

- special case of a chosen-plaintext attack
- the cryptanalyst can modify his choice based on the result of previous encryption

Cryptanalytic Attacks (Cont...)

- > Chosen-ciphertext attack
 - the cryptanalyst has access to the *decryption* device
 - given ciphertext plaintext pairs of the attacker's choosing
 - deduce key

Adaptive-chosen-ciphertext attack

- special case of a chosen-ciphertext attack
- the cryptanalyst can modify his choice based on the result of previous decryption

Rubber-hose cryptanalysis (or purchase-key attack)

- the cryptanalyst threatens, blackmails, or tortures someone until they give him the key
- often the best way to break an algorithm!

Attack on Protocols

- Until a protocol is proven to provide the service intended, the list of possible attacks can never be said to be complete
 - known-key attack: an adversary obtains some keys used previously to determine new keys
 - replay attack: an adversary records a communication session and replays the entire session, or a portion thereof, at some later point in time
 - impersonation attack: an adversary assumes the identity of one of the legitimate parties in a network
 - dictionary attack:
 - usually an attack against passwords
 - o password is stored as image of unkeyed hash function
 - an adversary takes a list of possible passwords, hash all entries and compare with stored hash values

Attack on Protocols (Cont...)

- forward search attack: similar to the dictionary attack and is used to decrypt messages
- interleaving attack: involves some form of impersonation in an authentication protocol
 - A and B executes a security protocol
 - an adversary intercepts all messages and sends its own messages
 - man-in-the-middle attack

Anatomy Of A Block Cipher

- DES: Data Encryption Standard
 - developed as Lucifer (one of a few) at IBM in 1970s
 - break message into 8-byte (64-bit) blocks
 - o each block broken into 32-bit halves
 - o initial permutation
 - O 16 rounds of scrambling
 - final (reverse) permutation
 - Feistel Network structure

The Scrambling Function

In each round i, we have L_i and R_i

– $L_{i+1} = R_i \leftarrow typical of Feistel networks$

$$= R_{i+1} = L_i \oplus f(R_i)$$

f-function

 key is compressed and permuted to 48 bits (called subkeys, different for each round)

- R_i (32-bits) is expanded and permuted to 48 bits

- 48 bits XOR'd, passed through S-boxes (to produce 32 bits), then permuted again
- irreversible

Copyright © William C. Cheng

Substitution Boxes (S-Boxes)

- > This is the heart of DES
- > 48 bit result broken into 6-bit units
- > Each unit passed through an S-box
 - 6-bit input, 4-bit output
 - each S-box is a 4x16 array of 4-bit numbers
 - b1 and b6 specify row, b2 through b5 specify column
 - End result passed through P-box

DES Properties

Desirable characteristics for a block cipher

- each bit of the ciphertext should depend on all bits of the key and all bits of the plaintext
- there should be no statistical relationship evident between plaintext and ciphertext
- altering any single plaintext or key bit should alter each ciphertext bit with probability 1/2
- altering a ciphertext bit should result in unpredictable change to the recovered plaintext block

Empirically, DES satisfies all the above objectives

DES Weak Keys

If generated subkeys are such that $k_1 = k_{16}$, $k_2 = k_{15}$, and so on, the encryption and decryption functions coincide

these are called weak keys (and also palindromic keys)

• if K is a weak key, then $E_K(E_K(x)) = x$ for all x

DES also has semi-weak keys

⇒ if (K_1, K_2) is pair of semi-weak keys, then $E_{K_1}(E_{K_2}(x)) = x$ for all x

DES has 4 weak keys and 6 pairs of semi-weak keys

semi-weak keys (hexadecimal)									
01FE	01FE	01FE	01FE,	FE01	FE01	FE01	FE01		
1FEO	1FEO	OEF1	OEF1,	E01F	E01F	F10E	F10E		
01E0	01E0	01F1	01F1,	E001	E001	F101	F101		
<i>1FFE</i>	<i>1FFE</i>	0efe	OEFE,	<i>EF1F</i>	<i>EF1F</i>	EF0E	EF0E		
011F	011F	010E	010E,	1F01	1F01	0E01	0E01		
EOFE	EOFE	<i>F1FE</i>	F1FE,	FEEO	FEEO	FEF1	FEF1		

weak keys (hexadecimal)									
0101	0101	0101	0101						
FEFE	FEFE	FEFE	FEFE						
<i>1F1F</i>	<i>1F1F</i>	1F1F	<i>1F1F</i>						
E0E0	EOEO	EOEO	EOEO						

🛏 Copyright © William C. Cheng

Modes of DES Operation (Cont...)

Stream cipher

- stream cipher: generates a (random or pseudorandom) keystream and applies it to a stream of plaintext with XOR
- one-time pad: if the keystream is truely randomly chosen and never used again, the stream cipher is a one-time pad

Cipher Feedback (CFB)

- for encrypting character-at-a-time (or less)
- chains as in CBC
- 🛥 also needs an IV
 - must be unique

• Output Feedback (OFB)

- like CFB, but some bits of output fed back into input stream

🛏 Copyright © William C. Cheng 🛛

DES Variants and Applications

Crypt: Unix hash function for passwords

- uses variable expansion permutations
- add a 12-bit *salt* (to modify DES)
 - to mitigate the *precomputed dictionary attack*
- encrypt the number 0
- **DES** with key-dependent S-boxes
- cannot be done blindly

🛏 Copyright © William C. Cheng

Lucifer Goes Standard

Lucifer is one of the IBM ciphers

- generally regarded in 1970s as one of the strongest cryptosystems
- > Heading toward standardization as DES
 - NSA managed to get key size reduced to 56 bits (from 64), yielding 10¹⁷ keys
 - also apparently changed S-boxes
 - why (or why not) do this?
 - NSA does not trust IBM
 - who trusts NSA?

🗕 Copyright © William C. Cheng

Certification of DES

- Had to be recertified every ~5 years
 - 1983: Recertified routinely
 - 1987: Recertified after NSA tried to promote secret replacement algorithms
 - withdrawal would mean lack of protection
 - lots of systems then using DES
 - **–** 1993: Recertified after continued lack of alternative

Enter AES

- 1998: NIST finally refuses to recertify DES
 - 1997: Call for candidates for Advanced Encryption Standard (AES)
 - fifteen candidates whittled down to five
 - criteria: Security, but also efficiency
 - compare Rijndael with Serpent (which is generally regarded as more secure but less efficient)
 - **2000: Rijndael selected as AES**

Structure of Rijndael

- Unlike DES, operates on whole bytes for efficiency of software implementations
- **Key sizes: 128/192/256 bits**
- Variable rounds: 9/11/13 rounds
- Rounds are not Feistel networks
- Round structure
 - run block through S-box (8x32)
 - permute result into 4x4/4x6/4x8 array of bytes
 - multiply each byte by 1, 2, or 3 in GF(2⁸)
 - addition in $GF(2^8)$ is done through XOR
 - mix subkey into result

🛏 Copyright © William C. Cheng

Impact of Attacks on Rijndael

Currently of theoretical interest only

- reduces complexity of attack to about 2¹⁰⁰ (after the system of quadratic equations are solved)
- \rightarrow also applicable to Serpent (complexity is about 2^{200})

Still, uncomfortably close to feasibility

- **DES** is already insecure against brute force
- **Schneier (somewhat arbitrarily) sets limit at 2**⁸⁰

Certainly usable pending further results

