CS530
Public Key

Cryptography
Bill Cheng

http://merlot.usc.edu/cs530-s10
1m0

\ Copyright © William C. Cheng J/

CSCI 530, Spring 2010 '\
Public Key Cryptography
ﬁ> aka asymmetric cryptography

ﬁ> Based on some NP-complete problem

= traveling salesman problem
Q n cities, connected
Q find shortest tour, all cities must be visited
Q solution complexity is n!

= unique factorization
Q factor an integer into product of prime numbers (unique

solution)

= discrete logarithms
Q for any integers b, n,y: Find x such that b* mod n = y
Q modular arithmetic produces folding

[w

\ Copyright © William C. Cheng

CSCI 530, Spring 2010 '\

A Short Note on Primes

ﬁ> Why are public keys (and private keys) so large?
= pecause key space is sparse

ﬁ} What is the probability that some large number p is prime?
= about 1in 1/In(p)
Q 2 digit numbers: 25 primes (1in 4)
Q 10 digit numbers: 1 in 23 are primes
Q 100 digit numbers: 1 in 230 are primes
Q but... the more digits, the more primes!
= when p =2 o1 (=10 150), equals about 1 in 355

O about1in 355° numbers =2 %*is product of two
primes (and therefore valid RSA modulo)

\ Copyright © William C. Cheng

7 CSCI 530, Spring 2010 '\

RSA
ﬁ> Rivest, Shamir, Adleman

ﬁ> Generate two primes. p, g
= let n =pqQ
= choose e, a small number, relatively primeto (p-1)(g-1)
= choose d (<n)suchthat ed =1 mod (p-1)(g-1)

ﬁ> RSA public-key is < e, n> (e is called the public exponent)
RSA private-key is < d, n> (d is called the private exponent)
= N Is called the public modulus

e d
ﬁ>Then,c:m mod N and m =Cc mod N
= can also encrypt with d and decrypt with e
. d e
l.e.,C=m modnand M=C modn

i} Note: encryption is fast (because e is small) and decryption

s o -
IS slow 4'.,,0

\ Copyright © William C. Cheng J/

CSCI 530, Spring 2010 N

An Example

ﬁ> Let p =5,q9 =11, e =3 (recall that p & g are primes)
= then n =55 (recall that n = pQq)
= pick e = 3 (recall that e is relatively primeto (p-1)(g-1))
= d =27, since (3)(27) mod 40 =1
(recall that ed =1 mod (p-1)(q-1))

) Ifm=7,then ¢ =7° mod 55 = 343 mod 55 = 13
) Then m should be = 13*' mod 55

ﬁ> Computlng 13°" mod 55
= 13 mod 55 = 13, 13 mod 55 =4, 13“ mod 55 = 16,

13 ° mod 55 = 36, 13 *° mod 55 = 31
= 27 = 1+2+8+16
= 13°" mod 55 = (13)(4)(36)(31) mod 55 =
(1872 mod 55)(31) mod 55 = 62 mod 55 = 7 (check) N
(H)w

\ Copyright © William C. Cheng

7 CSCI 530, Spring 2010 '\

Calculating the Private Exponent
) ed =1 mod (p-1)(g-1)

= d is the multiplicative inverse of e modulo (p-1)(g-1)
= multiplicative inverse of e is like the reciprocal of e since
el{l/e)=1
= |et a be an integer such that a < n has a multiplicative
inverse modulo n only if gcd(a,n)=1
Q a has a multiplicative inverse modulo n if and only if
gcd(a,n)=1

ﬁ> How to compute multiplicative inverses?
= use the Extended Euclidean Algorithm

\ Copyright © William C. Cheng

7 CSCI 530, Spring 2010 '\

Euclidean Algorithm

ﬁ> Input: two non-negative integers aand b with a=Db
Output: gcd(a,b)
1) while b > 0 do:
1.1) r —amodb,a « b,b <r
2) return (a)

_) Ex: a=425,b =153, gcd(a,b) = 17

q r a b

- - 425 153 425 = 2 (1153 + 119
21119 153 119 153 =11119+ 34
11 34 119 34 119 = 3 [B4 + 17

3| 17 34 17 34=207+0

2 o 17 0

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 =N

Extended Euclidean Algorithm acz4

ﬁ> Input: two non-negative integers ay and by with a = by
Output: d =gcd(ag,by) and integers x, y satisfying agx + bgy =d
1) if b=0thenset d — aj, x <« 1,y « 0, and return (d,x,y)
2) seta — ag, b « by, X5 « 1, X, « 0,y, « 0,y; « 1
3) while b >0 do:
31) q « [@bUr «a-qb,x « X;-0Xy, Y < Yo -Qy;
32) a<b,br XXXy X, YY1, Y1 <Y
4) setd « a, X « Xy, ¥ « Yy, and return (d,x,y)
= end of each iteration: agyx, + bgy, = a

) Ex: ay =425, b, =153, gcd(ag,bg) = 17, and 425 [4+153 [{-11) = 1

qQq r x 'y a b X X3 Yy ¥
—_ 25 153 1 0 0 1
2 119 1 2 153 119 0 1 1 -2
1 34 1 3 119 34 1 1 2 3
3 17 4 11 34 17 1 4 3 11
2 0 8 25 17 Q 4 8 11 25

k)

\ Copyright © William C. Cheng

7 CSCI 530, Spring 2010 '\

The Table Method
ﬁ> A simple way to implement the Extended Euclidean Algorithm

= http://en.wikipedia.org/wiki/Extended_ Euclidean_algorithm

renf1l] = a0;
renf2] = bo;
x[1] = 0;
x[2] = 1;
y[1] = 1
y[2] = 0;

for (1i=3; renfi] > 1; 1++) {

renfi] =renfi-2] %renfi-1];

quo[i] =renfi-2] / remi-1];

X[1] = -quo[i] * x[i-1] + x[i-2];

y[i] = -quo[i] * y[i-1] + y[i-2]; /* optional */
}

I nverse = X[1];

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

The Table Method (Cont...)
) Ex: ag =425, by = 153, gcd(ag,bg) = 17, and 425 (M+153 [(-11) = 17

qQq r x 'y a b x5 X3y,
- - - - 425 153 1 0 0 1
2 119 1 -2 153 119 0 1 1 -2
1 34 -1 3 119 34 1 -1 -2 3
3 17 4 11 34 17 1 4 3 11
2 0 8 25 17 0 4 -8 11 25
= Table Method:
renfi] =renfi-2] - quo[i] * renfi-1
X[1] = x[1-2] - quof[lI]| * X[1-1
yir] = yl1-2] - quo|i] * yl1-1
| quo rem X y
1 - 425 0 1
2 - 153 1 0

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

The Table Method (Cont...)
) Ex: ag =425, by = 153, gcd(ag,bg) = 17, and 425 (M+153 [(-11) = 17

qQq r x 'y a b x5 X3y,
- - - - 425 153 1 0 0 1
2 119 1 -2 153 119 0 1 1 -2
1 34 -1 3 119 34 1 -1 -2 3
3 17 4 11 34 17 1 4 3 11
2 0 8 25 17 0 4 -8 11 25
= Table Method:
renfi] =renfi-2] - quo[i] * renfi-1
X[1] = x[1-2] - quo[l]| * X[1-1
yir] = yl1-2] - quo|i] * yl1-1
| quo rem X y
1 - 425 0 1
2 - 153 1 0
3 2 119

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

The Table Method (Cont...)
) Ex: ag =425, by = 153, gcd(ag,bg) = 17, and 425 (M+153 [(-11) = 17

qQq r x 'y a b x5 X3y,
- - - - 425 153 1 0 0 1
2 119 1 -2 153 119 0 1 1 -2
1 34 -1 3 119 34 1 -1 -2 3
3 17 4 11 34 17 1 4 3 11
2 0 8 25 17 0 4 -8 11 25
= Table Method:
remfi] =renfi-2] - quo[i] * renfi-1
X[1] = x[1-2] - quof[lI]| * X[1-1
yilr] = yl1-2] - quolil] * yl1-1
| quo rem X y
1 - 425 0 1
2 - 153 1 0
3 2 119 2

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

The Table Method (Cont...)
) Ex: ag =425, by = 153, gcd(ag,bg) = 17, and 425 (M+153 [(-11) = 17

qQq r x 'y a b x5 X3y,
- - - - 425 153 1 0 0 1
2 119 1 -2 153 119 0 1 1 -2
1 34 -1 3 119 34 1 -1 -2 3
3 17 4 11 34 17 1 4 3 11
2 0 8 25 17 0 4 -8 11 25
= Table Method:
renfi] =renfi-2] - quo[i] * renfi-1
X[1] = x[1-2] - quof[l]| * X[1-1
yi1r] = yl1-2] - quo|il] * yl1-1
| quo rem X y
1 - 425 0 1
2 - 153 1 0
3 2 119 2 1

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

The Table Method (Cont...)
) Ex: ag =425, by = 153, gcd(ag,bg) = 17, and 425 (M+153 [(-11) = 17

q r x 'y a b x X Yy, ¥y
- - - - 425 153 1 0 0 1
2 119 1 -2 153 119 0 1 1 -2
1 34 1 3119 34 11 2 3
3 17 4 11 34 17 -1 4 3 11
2 0 8 25 17 0 4 -8 11 25
= Table Method:
renfi] =renfi-2] - quo[i] * renfi-1
X[1] = X[1-2] - quolI] * X[1-1
yii] = yl1-2] - quo|il]| * yli1-1
| quo rem X y
1 - 425 0 1
2 - 153 1 0
3 2 119 2 1
41 34 3

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

The Table Method (Cont...)
) Ex: ag =425, by = 153, gcd(ag,bg) = 17, and 425 (M+153 [(-11) = 17

qQq r x 'y a b x5 X3y,
- - - - 425 153 1 0 0 1
2 119 1 -2 153 119 0 1 1 -2
1 34 -1 3 119 34 1 -1 -2 3
3 17 4 11 34 17 1 4 3 11
2 0 8 25 17 0 4 -8 11 25
= Table Method:
renfi] =renfi-2] - quo[i] * renfi-1
X[1] = x[1-2] - quof[lI]| * X[1-1
yir] = yl1-2] - quo|i] * yl1-1
| quo rem X y
1 - 425 0 1
2 - 153 1 0
3 2 119 2 1
41 34 3
5 3 17 11 4

\ Copyright © William C. Cheng

7 CSCI 530, Spring 2010 '\

The Table Method (Cont...)
) Ex: ag =425, by = 153, gcd(ag,bg) = 17, and 425 (M+153 [(-11) = 17
g r x 'y a b X X3y ¥
- - - - 425 153 1 0 0 1
2 119 1 -2 153 119 Q0 1 1 -2
1 34 1 3119 34 1 1 -2 3
3 17 4 31 34 17 14 3 11
2 0 8 25 17 0 4 8 11 25
= Table Method:
renfi] =renfi-2] - quo[i] * renfi-1
X[1] = x[1-2] - quof[lI]| * X[1-1
yir] = yl1-2] - quo|i] * yl1-1
| quo rem X y
1 - 425 0 1
2 - 153 10
3~ 2 119 2]
41 34 3
5 3 17 11 4
6 2 0 25 9
L

\ Copyright © William C. Cheng J/

CSCI 530, Spring 2010 '\

Multiplicative Inverse Example

ﬁ> What is the multipliactive inverse of 3 modulo 407
= |et a=40 and b=3, formulate ax + by =d
= since 3 and 40 are relatively prime, d=1
= after solving ax + by =1 (mod a)
Q x isreally irrelavent since a =0 (mod a)
Q v is the multiplicative of b (mod a)
= use the Table Method

quo rem X
40 0

- 3 1

13 1 -13

Q the multipliactive inverse of 3 (mod 40) is -13 =27 (mod 40)
& 3 [R7 =1 (mod 40)

\ Copyright © William C. Cheng

CSCI 530, Spring 2010 '\

Security of RSA

ﬁ> Avoid known pitfalls
= p and g cannot be small
= always add salt (i.e., nonce) to a message
= introduce structural constraints on plaintext messages,
e.g., repeat bits in original input message before encryption
Q after decryption, check constraints
Q if constraints not met, do not send back decrypted data

ﬁ> Breaking RSA is believed to be equivalent to solving the
unigue factorization problem
= tools for unique factorization of large products of primes
Q elliptic curve factoring algorithm
Q guadratic sieve or general number field sieve
& although subexponential, if p and g are large enough,

these methods are not considered
" 18 ﬂ

computationally feasible" to factor
\ Copyright © William C. Cheng

CSCI 530, Spring 2010 '\

Other Public Key Cryptosystems

) Diffie-Hellman
= first public key cryptosystem
= Diffie and Hellman were often cited as creators of public
key cryptosystem
= Security based on the discrete logarithm problem
Q for any integers g, p, n: find k such that g K mod p=n

ﬁ> Parameters of the Diffie-Hellman cryptosystem
= prime p (the modulus) and g (the generator)
Q 1<g<p-2andfor i=0,1,2,3,...p-2, ¢ | generates all values
between 1 through p-1
= every entity picks a private key k
Q its publickey K =g K mod P

i} Diffie-Hellman is not strickly a public key cryptosystem

= basically a key exchange system N 1 FOJ

\ Copyright © William C. Cheng

CSCI 530, Spring 2010 '\

Diffie-Hellman Example

ﬁ> Diffie-Hellman example
= Alice has private key x and publickey X =g mod p
= Bob has private key vy and publickey Y =g Y mod P
= Alice wants to communicate with Bob
Q gets Bob’s public key Y and computes Z=Y * mod P
Q derive a key z from Z using a pre-defined public
algorithm (e.g., m ¥ * mod p)
Q encrypts a message with z
= when Bob gets an encrypted message from Alice
Q gets Alice’s public key X and computes Z' = XY mod P
Q Z’:Z:gxymodp
Q derive a symmetric key 2z’ from Z’ using a pre-defined
public algorithm
Q decrypts Alice’s message with z'=7z

o110

J

\ Copyright © William C. Cheng

CSCI 530, Spring 2010 '\

Diffie-Hellman Numeric Example

ﬁ> Diffie-Hellman numeric example

p =53, g =17 (which can be shown to be a generator)
Xx=5,X=g modp =17 mod 53 = 40

y=7,Y=9g modp=17"mod 53=6

XY mod p =40 " mod 53 = 38

Y* mod p = 6 mod 53 = 38

[

00 00

\ Copyright © William C. Cheng

Other Public Key Cryptosystems (Cont...)

ﬁ> ElGamal (signature, encryption)
= eX: (encryption and decryption)

Q
Q
Q

Q

Q

Q

= mostly used for sighatures

\ Copyright © William C. Cheng

CSCI 530, Spring 2010 '\

choose a prime p, and two random numbers g, x <p
public key is g, p,and X =g " mod p

private key is x; to obtain from public key requires
extracting discrete log

to encrypt message m for an entity with private key y
and publickey Y =g” mod p, compute ¢ =m [’ mod p
& recall that g Y mod p= XY mod p= Y * mod P

to decrypt message m, first compute g~ mod p

< g'k[gkzlmodp

then compute ¢ (g " modp=m [y (g~ mod p=m

111 w0

J

CSCI 530, Spring 2010 '\

Other Public Key Cryptosystems (Cont...)

ﬁ> EIIiptgc cur?\)/e crypz)tosystems
= y =X +ax +bx+c
= elliptic curves were featured in Fermat’s Last Theorem
proof
Q Fermat’s Last Theorem:
& cannot find x, vy, z, such that X" +yIn =z"ifn>2
= elliptic curves (e.g., mod n or arithmatic in GF(28)) used to
Implement existing public-key systems (e.g., RSA, ElGamal)
Q allow for shorter keys and greater efficiency
Q application in battery operated devices

11 w0

\ Copyright © William C. Cheng

7 CSCI 530, Spring 2010 '\

Combining Public-key and Secret-key
Algorithms

i} Public-key algorithms are orders of magnitude slower than
secret-key algorithms
= not practical to encrypt a large document using public-key

cryptography

G> Bulk data encryption
= combine public-key (e.g., RSA) and secret-key (e.g., 3DES)
Q generate session key (random)
Q encrypt session key with receiver's RSA public key
& session key must be smaller than the public modulus
Q 3DES encrypt data with session key
Q receiver decrypts with RSA private key to get session
key, then decrypts data with session key
= pasically a method of key exchange

Lt

\ Copyright © William C. Cheng J/

CSCI 530, Spring 2010 '\

Another Way to Exchange Keys

ﬁ> Diffie-Hellman key exchange
= choose large prime p, and generator g
Q forany nin (1, p-1), there exists a k such that g “ =1 mod P
Alice, Bob select secret values x, vy, respectively
Alice sends X =g * mod P
Bob sends Y =g’ mod p
both compute ¢ Y mod p, a shared secret
Q can be used as keying material

0 00 [

ﬁ> Diffie-Hellman key exchange is vulnerable to the
man-in-the-middle attack
= Eve selects z and computes Z =g * mod P
= Eve establishes a channel with Alice using g’ mod p
= Eve establishes a channel with Bob using g ”* mod p
= Alice and Bob cannot know that Eve is decrypting -
511 ™0

and re-encrypting messages
- Copyright © William C. Cheng yptng g Y

