

CSCI 530, Spring 2010

- aka asymmetric cryptography
- Based on some NP-complete problem
 - traveling salesman problem
 - *n* cities, connected
 - find shortest tour, all cities must be visited
 - solution complexity is *n*!
 - unique factorization
 - factor an integer into product of prime numbers (unique solution)
 - discrete logarithms
 - for any integers *b*, *n*, *y*: Find *x* such that $b^x \mod n = y$
 - o modular arithmetic produces folding

A Short Note on Primes

- because key space is sparse
- What is the probability that some large number *p* is prime?
 - about 1 in 1/ln(p)
 - 2 digit numbers: 25 primes (1 in 4)
 - O 10 digit numbers: 1 in 23 are primes
 - 100 digit numbers: 1 in 230 are primes
 - but... the more digits, the more primes!
 - → when $p \approx 2^{512}$ (≈ 10¹⁵⁰), equals about 1 in 355
 - about 1 in 355² numbers $\approx 2^{1024}$ is product of two primes (and therefore valid RSA modulo)

RSA

Calculating the Private Exponent

- **ed** = 1 mod (p-1)(q-1)
 - d is the multiplicative inverse of e modulo (p-1)(q-1)
 - multiplicative inverse of e is like the reciprocal of e since e · (1/e) = 1
 - let a be an integer such that a < n has a multiplicative inverse modulo n only if gcd(a,n)=1
 - a has a multiplicative inverse modulo n if and only if gcd(a,n)=1

How to compute multiplicative inverses?

- use the Extended Euclidean Algorithm

Multiplicative Inverse Example

What is the multipliactive inverse of 3 modulo 40?

- let *a*=40 and *b*=3, formulate *ax* + *by* = *d*
- \rightarrow since 3 and 40 are relatively prime, d = 1
- after solving $ax + by = 1 \pmod{a}$
 - x is really irrelavent since $a = 0 \pmod{a}$
 - y is the multiplicative of b (mod a)
- use the Table Method

quo	rem	X
-	40	0
-	3	1
13	1	-13

• the multipliactive inverse of 3 (mod 40) is $-13 \equiv 27 \pmod{40}$

CSCI 530, Spring 2010

Security of RSA

Avoid known pitfalls

- p and q cannot be small
- always add salt (i.e., nonce) to a message
- introduce *structural constraints* on plaintext messages,
 - e.g., repeat bits in original input message before encryption
 - after decryption, check constraints
 - if constraints not met, do not send back decrypted data
- Breaking RSA is believed to be equivalent to solving the unique factorization problem
 - tools for unique factorization of large products of primes
 - elliptic curve factoring algorithm
 - quadratic sieve or general number field sieve
 - although subexponential, if p and q are large enough, these methods are not considered

"computationally feasible" to factor

Diffie-Hellman Example

- Diffie-Hellman example
 - Alice has private key x and public key $X = g^{x} \mod p$
 - Bob has private key y and public key $Y = g^{y} \mod p$
- Alice wants to communicate with Bob
 - gets Bob's public key Y and computes $Z = Y^X \mod p$
 - derive a key z from Z using a pre-defined public algorithm (e.g., $m \cdot Y^{X} \mod p$)
 - o encrypts a message with z
- when Bob gets an encrypted message from Alice
 - gets Alice's public key X and computes $Z' = X^{Y} \mod p$
 - $\bigcirc Z' = Z = g^{XY} \mod p$
 - derive a symmetric key z' from Z' using a pre-defined public algorithm
 - decrypts Alice's message with z'=z

Diffie-Hellman Numeric Example

Other Public Key Cryptosystems (Cont...)

ElGamal (signature, encryption)

- ex: (encryption and decryption)
 - choose a prime *p*, and two random numbers *g*, *x* < *p*
 - public key is g, p, and $X = g^{x} \mod p$
 - private key is x; to obtain from public key requires extracting discrete log
 - to encrypt message m for an entity with private key y and public key Y = g^Y mod p, compute c = m ⋅ g^{XY} mod p
 recall that g^{XY} mod p = X^Y mod p = Y^X mod p
 - to decrypt message *m*, first compute $g^{-xy} \mod p$ • $g^{-k} \cdot g^{k} \equiv 1 \mod p$

• then compute $c \cdot g^{-xy} \mod p = m \cdot g^{xy} \cdot g^{-xy} \mod p = m$ • mostly used for signatures

- Elliptic curve cryptosystems
- $y^2 = x^3 + ax^2 + bx + c$
- elliptic curves were featured in Fermat's Last Theorem proof
 - Fermat's Last Theorem:
 - cannot find x, y, z, such that $x^n + y^n = z^n$ if n > 2
- elliptic curves (e.g., mod n or arithmatic in GF(2⁸)) used to implement existing public-key systems (e.g., RSA, ElGamal)
 - allow for shorter keys and greater efficiency
 - application in battery operated devices

Combining Public-key and Secret-key Algorithms

- Public-key algorithms are orders of magnitude slower than secret-key algorithms
 - not practical to encrypt a large document using public-key cryptography

Bulk data encryption

- combine public-key (e.g., RSA) and secret-key (e.g., 3DES)
 - generate session key (random)
 - o encrypt session key with receiver's RSA public key
 - session key must be smaller than the public modulus
 - 3DES encrypt data with session key
 - receiver decrypts with RSA private key to get session key, then decrypts data with session key

basically a method of key exchange

