
 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
1

CS530
Public Key

Cryptography

Bill Cheng

http://merlot.usc.edu/cs530-s10

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
2

Public Key Cryptography

unique factorization

for any integers b, n, y: Find x such that bx mod n = y

aka asymmetric cryptography

Based on some NP-complete problem

discrete logarithms

traveling salesman problem
n cities, connected
find shortest tour, all cities must be visited
solution complexity is n!

modular arithmetic produces folding

factor an integer into product of prime numbers (unique
solution)

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
3

A Short Note on Primes

about 1 in 1/ln(p)

about 1 in 355 2 numbers ≈ 2 1024 is product of two
primes (and therefore valid RSA modulo)

Why are public keys (and private keys) so large?

What is the probability that some large number p is prime?

when p ≈ 2 512 (≈ 10 150), equals about 1 in 355

2 digit numbers: 25 primes (1 in 4)
10 digit numbers: 1 in 23 are primes
100 digit numbers: 1 in 230 are primes
but... the more digits, the more primes!

because key space is sparse

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
4

RSA

let n = pq

Rivest, Shamir, Adleman

Generate two primes: p, q

choose e, a small number, relatively prime to (p-1)(q-1)
choose d (< n) such that ed ≡ 1 mod (p-1)(q-1)

Then, c = m e mod n and m = c d mod n

Note: encryption is fast (because e is small) and decryption
is slow

RSA public-key is < e, n> (e is called the public exponent)
RSA private-key is < d, n> (d is called the private exponent)

can also encrypt with d and decrypt with e

i.e., c = m d mod n and m = c e mod n

n is called the public modulus

pick e = 3 (recall that e is relatively prime to (p-1)(q-1))

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
5

An Example

then n = 55 (recall that n = pq)
Let p = 5, q = 11, e = 3 (recall that p & q are primes)

d = 27, since (3)(27) mod 40 = 1
(recall that ed ≡ 1 mod (p-1)(q-1))

If m = 7, then c = 7 3 mod 55 = 343 mod 55 = 13

Then m should be = 13 27 mod 55

13 1 mod 55 = 13, 13 2 mod 55 = 4, 13 4 mod 55 = 16,
13 8 mod 55 = 36, 13 16 mod 55 = 31

Computing 13 27 mod 55

27 = 1+2+8+16
13 27 mod 55 = (13)(4)(36)(31) mod 55 =
(1872 mod 55)(31) mod 55 = 62 mod 55 = 7 (check)

ed ≡ 1 mod (p-1)(q-1)

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
6

Calculating the Private Exponent

d is the multiplicative inverse of e modulo (p-1)(q-1)
multiplicative inverse of e is like the reciprocal of e since
e ⋅ (1/e) = 1
let a be an integer such that a < n has a multiplicative
inverse modulo n only if gcd(a,n)=1

a has a multiplicative inverse modulo n if and only if
gcd(a,n)=1

use the Extended Euclidean Algorithm
How to compute multiplicative inverses?

2 ⋅ 153 + 119
1 ⋅ 119 + 34
3 ⋅ 34 + 17
2 ⋅ 17 + 0

Input: two non-negative integers a and b with a ≥ b
Output: gcd(a,b)

while b > 0 do:1)
r ← a mod b, a ← b, b ← r1.1)

return (a)2)

Ex: a = 425, b = 153, gcd(a,b) = 17

r
-

119
34
17

0

a
425
153
119

34
17

b
153
119

34
17

0

425
153
119

34

=
=
=
=

q
-
2
1
3
2

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
7

Euclidean Algorithm

a
425
153
119

34
17

b
153
119

34
17

0

x2

1
0
1

-1
4

x1

0
1

-1
4

-8

y2

0
1

-2
3

-11

y1

1
-2
3

-11
25

y
-

-2
3

-11
25

x
-
1

-1
4

-8

r
-

119
34
17

0

q
-
2
1
3
2

if b = 0 then set d ← a0, x ← 1, y ← 0, and return (d,x,y)

Input: two non-negative integers a0 and b0 with a0 ≥ b0

Output: d = gcd(a0,b0) and integers x, y satisfying a0x + b0y = d
1)

set a ← a0, b ← b0, x2 ← 1, x1 ← 0, y2 ← 0, y1 ← 12)
while b > 0 do:3)

q ← a/b , r ← a - qb, x ← x2 - qx1, y ← y2 - qy13.1)
a ← b, b ← r, x2 ← x1, x1 ← x, y2 ← y1, y1 ← y3.2)

set d ← a, x ← x2, y ← y2, and return (d,x,y)4)

Ex: a0 = 425, b0 = 153, gcd(a0,b0) = 17, and 425 ⋅ 4+153 ⋅ (-11) = 17

end of each iteration: a0x2 + b0y2 = a

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
8

Extended Euclidean Algorithm [HAC 2.4]

A simple way to implement the Extended Euclidean Algorithm
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

rem[1] = a0;
rem[2] = b0;
x[1] = 0;
x[2] = 1;
y[1] = 1;
y[2] = 0;
for (i=3; rem[i] > 1; i++) {
 rem[i] = rem[i-2] % rem[i-1];
 quo[i] = rem[i-2] / rem[i-1];
 x[i] = -quo[i] * x[i-1] + x[i-2];
 y[i] = -quo[i] * y[i-1] + y[i-2]; /* optional */
}
inverse = x[i];

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
9

The Table Method

rem yxquo

a
425
153
119

34
17

b
153
119

34
17

0

x2

1
0
1

-1
4

x1

0
1

-1
4

-8

y2

0
1

-2
3

-11

y1

1
-2
3

-11
25

y
-

-2
3

-11
25

x
-
1

-1
4

-8

r
-

119
34
17

0

q
-
2
1
3
2

425
153

1
0

0
1

-
-

Table Method:

Ex: a0 = 425, b0 = 153, gcd(a0,b0) = 17, and 425 ⋅ 4+153 ⋅ (-11) = 17

rem[i] = rem[i-2] - quo[i] * rem[i-1]
 x[i] = x[i-2] - quo[i] * x[i-1]
 y[i] = y[i-2] - quo[i] * y[i-1]

i
1
2

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
10

The Table Method (Cont...)

rem yxquo

a
425
153
119

34
17

b
153
119

34
17

0

x2

1
0
1

-1
4

x1

0
1

-1
4

-8

y2

0
1

-2
3

-11

y1

1
-2
3

-11
25

y
-

-2
3

-11
25

x
-
1

-1
4

-8

r
-

119
34
17

0

q
-
2
1
3
2

425
153
119

1
0

0
1

-

2
-

Table Method:

Ex: a0 = 425, b0 = 153, gcd(a0,b0) = 17, and 425 ⋅ 4+153 ⋅ (-11) = 17

rem[i] = rem[i-2] - quo[i] * rem[i-1]
 x[i] = x[i-2] - quo[i] * x[i-1]
 y[i] = y[i-2] - quo[i] * y[i-1]

i
1

3
2

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
11

The Table Method (Cont...)

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
12

The Table Method (Cont...)

rem yxquo

a
425
153
119

34
17

b
153
119

34
17

0

x2

1
0
1

-1
4

x1

0
1

-1
4

-8

y2

0
1

-2
3

-11

y1

1
-2
3

-11
25

y
-

-2
3

-11
25

x
-
1

-1
4

-8

r
-

119
34
17

0

q
-
2
1
3
2

425
153
119

1
0

0
1

-2

-

2
-

Table Method:

Ex: a0 = 425, b0 = 153, gcd(a0,b0) = 17, and 425 ⋅ 4+153 ⋅ (-11) = 17

rem[i] = rem[i-2] - quo[i] * rem[i-1]
 x[i] = x[i-2] - quo[i] * x[i-1]
 y[i] = y[i-2] - quo[i] * y[i-1]

i
1

3
2

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
13

The Table Method (Cont...)

rem yxquo

a
425
153
119

34
17

b
153
119

34
17

0

x2

1
0
1

-1
4

x1

0
1

-1
4

-8

y2

0
1

-2
3

-11

y1

1
-2
3

-11
25

y
-

-2
3

-11
25

x
-
1

-1
4

-8

r
-

119
34
17

0

q
-
2
1
3
2

425
153
119

1
0
1

0
1

-2

-

2
-

Table Method:

Ex: a0 = 425, b0 = 153, gcd(a0,b0) = 17, and 425 ⋅ 4+153 ⋅ (-11) = 17

rem[i] = rem[i-2] - quo[i] * rem[i-1]
 x[i] = x[i-2] - quo[i] * x[i-1]
 y[i] = y[i-2] - quo[i] * y[i-1]

i
1

3
2

rem yxquo

a
425
153
119

34
17

b
153
119

34
17

0

x2

1
0
1

-1
4

x1

0
1

-1
4

-8

y2

0
1

-2
3

-11

y1

1
-2
3

-11
25

y
-

-2
3

-11
25

x
-
1

-1
4

-8

r
-

119
34
17

0

q
-
2
1
3
2

425
153
119
34

1
0
1

-1

0
1

-2
3

-

2
1

-

Table Method:

Ex: a0 = 425, b0 = 153, gcd(a0,b0) = 17, and 425 ⋅ 4+153 ⋅ (-11) = 17

rem[i] = rem[i-2] - quo[i] * rem[i-1]
 x[i] = x[i-2] - quo[i] * x[i-1]
 y[i] = y[i-2] - quo[i] * y[i-1]

4

i
1

3
2

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
14

The Table Method (Cont...)

rem yxquo

a
425
153
119

34
17

b
153
119

34
17

0

x2

1
0
1

-1
4

x1

0
1

-1
4

-8

y2

0
1

-2
3

-11

y1

1
-2
3

-11
25

y
-

-2
3

-11
25

x
-
1

-1
4

-8

r
-

119
34
17

0

q
-
2
1
3
2

425
153
119

34
17

1
0
1

-1
4

0
1

-2
3

-11

-

2
1
3

-

Table Method:

Ex: a0 = 425, b0 = 153, gcd(a0,b0) = 17, and 425 ⋅ 4+153 ⋅ (-11) = 17

rem[i] = rem[i-2] - quo[i] * rem[i-1]
 x[i] = x[i-2] - quo[i] * x[i-1]
 y[i] = y[i-2] - quo[i] * y[i-1]

4

i
1

3

5

2

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
15

The Table Method (Cont...)

4

rem yxquo

a
425
153
119

34
17

b
153
119

34
17

0

x2

1
0
1

-1
4

x1

0
1

-1
4

-8

y2

0
1

-2
3

-11

y1

1
-2
3

-11
25

y
-

-2
3

-11
25

x
-
1

-1
4

-8

r
-

119
34
17

0

q
-
2
1
3
2

425
153
119

34
17

1
0
1

-1
4

0
1

-2
3

-11

-

2
1
3
2

-

0 -925

Table Method:

Ex: a0 = 425, b0 = 153, gcd(a0,b0) = 17, and 425 ⋅ 4+153 ⋅ (-11) = 17

rem[i] = rem[i-2] - quo[i] * rem[i-1]
 x[i] = x[i-2] - quo[i] * x[i-1]
 y[i] = y[i-2] - quo[i] * y[i-1]

i
1

3

5
6

2

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
16

The Table Method (Cont...)

What is the multipliactive inverse of 3 modulo 40?

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
17

Multiplicative Inverse Example

let a=40 and b=3, formulate ax + by = d
since 3 and 40 are relatively prime, d = 1
after solving ax + by = 1 (mod a)

x is really irrelavent since a = 0 (mod a)
y is the multiplicative of b (mod a)

use the Table Method

-

rem xquo
40

3
1

0
1

-13

-

13

the multipliactive inverse of 3 (mod 40) is -13 ≡ 27 (mod 40)
3 ⋅ 27 = 1 (mod 40)

Breaking RSA is believed to be equivalent to solving the
unique factorization problem

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
18

Security of RSA

always add salt (i.e., nonce) to a message

Avoid known pitfalls

introduce structural constraints on plaintext messages,
e.g., repeat bits in original input message before encryption

after decryption, check constraints
if constraints not met, do not send back decrypted data

p and q cannot be small

tools for unique factorization of large products of primes
elliptic curve factoring algorithm
quadratic sieve or general number field sieve

although subexponential, if p and q are large enough,
these methods are not considered
"computationally feasible" to factor

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
19

Other Public Key Cryptosystems

first public key cryptosystem
Diffie-Hellman

Diffie and Hellman were often cited as creators of public
key cryptosystem
security based on the discrete logarithm problem

1 ≤ g ≤ p-2 and for i=0,1,2,3,...p-2, g i generates all values
between 1 through p-1

for any integers g, p, n: find k such that g k mod p = n

prime p (the modulus) and g (the generator)
Parameters of the Diffie-Hellman cryptosystem

every entity picks a private key k
its public key K = g k mod p

Diffie-Hellman is not strickly a public key cryptosystem
basically a key exchange system

decrypts Alice’s message with z’= z

encrypts a message with z

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
20

Diffie-Hellman Example

Alice has private key x and public key X = g x mod p
Diffie-Hellman example

gets Bob’s public key Y and computes Z = Y x mod p

gets Alice’s public key X and computes Z’ = X y mod p

Bob has private key y and public key Y = g y mod p
Alice wants to communicate with Bob

derive a key z from Z using a pre-defined public
algorithm (e.g., m ⋅ Y x mod p)

when Bob gets an encrypted message from Alice

Z’ = Z = g xy mod p
derive a symmetric key z’ from Z’ using a pre-defined
public algorithm

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
21

Diffie-Hellman Numeric Example

p = 53, g = 17 (which can be shown to be a generator)
Diffie-Hellman numeric example

x = 5, X = g x mod p = 17 5 mod 53 = 40
y = 7, Y = g y mod p = 17 7 mod 53 = 6
X y mod p = 40 7 mod 53 = 38
Y x mod p = 6 5 mod 53 = 38

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
22

Other Public Key Cryptosystems (Cont...)
ElGamal (signature, encryption)

ex: (encryption and decryption)
choose a prime p, and two random numbers g, x < p

recall that g xy mod p = X y mod p = Y x mod p

public key is g, p, and X = g x mod p
private key is x; to obtain from public key requires
extracting discrete log
to encrypt message m for an entity with private key y
and public key Y = g y mod p, compute c = m ⋅ g xy mod p

g -k ⋅ g k ≡ 1 mod p
to decrypt message m, first compute g -xy mod p

then compute c ⋅ g -xy mod p = m ⋅ g xy ⋅ g -xy mod p = m
mostly used for signatures

cannot find x, y, z, such that x n + y n = z n if n > 2
elliptic curves (e.g., mod n or arithmatic in GF(28)) used to
implement existing public-key systems (e.g., RSA, ElGamal)

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
23

Other Public Key Cryptosystems (Cont...)

y 2 = x 3 + ax 2 + bx + c

allow for shorter keys and greater efficiency

Elliptic curve cryptosystems

elliptic curves were featured in Fermat’s Last Theorem
proof

application in battery operated devices

Fermat’s Last Theorem:

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
24

Combining Public-key and Secret-key
Algorithms

Public-key algorithms are orders of magnitude slower than
secret-key algorithms

combine public-key (e.g., RSA) and secret-key (e.g., 3DES)
Bulk data encryption

generate session key (random)
encrypt session key with receiver’s RSA public key

3DES encrypt data with session key
receiver decrypts with RSA private key to get session
key, then decrypts data with session key

not practical to encrypt a large document using public-key
cryptography

basically a method of key exchange

session key must be smaller than the public modulus

Eve establishes a channel with Bob using g yz mod p

choose large prime p, and generator g
for any n in (1, p-1), there exists a k such that g k ≡ n mod p

Diffie-Hellman key exchange

Alice, Bob select secret values x, y, respectively
Alice sends X = g x mod p
Bob sends Y = g y mod p
both compute g xy mod p, a shared secret

can be used as keying material

Eve selects z and computes Z = g z mod p

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
25

Another Way to Exchange Keys

Diffie-Hellman key exchange is vulnerable to the
man-in-the-middle attack

Eve establishes a channel with Alice using g xz mod p

Alice and Bob cannot know that Eve is decrypting
and re-encrypting messages

