CS530
 Public Key Cryptography

 Bill Cheng
http://merlot.usc.edu/cs530-s10

Public Key Cryptography

\Rightarrow
aka asymmetric cryptography
\square
Based on some NP-complete problem

- traveling salesman problem
- n cities, connected
- find shortest tour, all cities must be visited
- solution complexity is n !
- unique factorization
o factor an integer into product of prime numbers (unique solution)
- discrete logarithms
o for any integers b, n, y : Find x such that $b^{x} \bmod n=y$
- modular arithmetic produces folding

Copyright © William C. Chang

A Short Note on Primes

Why are public keys (and private keys) so large?
$=$ because key space is sparse
\Rightarrow
What is the probability that some large number p is prime?

- about 1 in $1 / I n(p)$
- 2 digit numbers: 25 primes (1 in 4)
- 10 digit numbers: 1 in 23 are primes
- 100 digit numbers: 1 in 230 are primes
- but... the more digits, the more primes!
- when $p \approx 2^{512}\left(\approx 10^{150}\right)$, equals about 1 in 355
- about 1 in 355^{2} numbers $\approx 2^{1024}$ is product of two primes (and therefore valid RSA modulo)

Copyright © William C. Chang

RA

Rivest, Shamir, Adleman
\Rightarrow Generate two primes: p, q

- let $n=p q$
- choose e, a small number, relatively prime to $(p-1)(q-1)$
$=$ choose $d(<n)$ such that $e d \equiv 1 \bmod (p-1)(q-1)$
\Rightarrow
RSA public-key is $<e, n>$ (e is called the public exponent) RSA private-key is $<d, n>$ (d is called the private exponent)
$=n$ is called the public modulus
\Rightarrow
Then, $c=m^{e} \bmod n$ and $m=c^{d} \bmod n$
$=$ can also encrypt with d and decrypt with e ie., $c=m^{d} \bmod n$ and $m=c^{e} \bmod n$

\Rightarrow
Note: encryption is fast (because e is small) and decryption is slow
${ }_{4}$ T
Copyright © William C. Chang

An Example

\Rightarrow Let $p=5, q=11, e=3$ (recall that $p \& q$ are primes)
= then $n=55$ (recall that $n=p q$)

- pick $e=3$ (recall that e is relatively prime to $(p-1)(q-1)$)
- $d=27$, since (3)(27) $\bmod 40=1$ (recall that $e d \equiv 1 \bmod (p-1)(q-1))$
\triangleleft If $m=7$, then $c=7^{3} \bmod 55=343 \bmod 55=13$
\Rightarrow Then m should be $=13^{27} \bmod 55$
\Rightarrow
Computing 13^{27} mod 55
- $13^{1}{ }^{\text {mod }} 55=13,13^{2}{ }^{\bmod 55} 5=4,13^{4} \bmod 55=16$, $13^{8} \bmod 55=36,13^{16} \bmod 55=31$
- $27=1+2+8+16$
- $13^{27} \bmod 55=(13)(4)(36)(31) \bmod 55=$ $(1872 \bmod 55)(31) \bmod 55=62 \bmod 55=7($ check $)$

Copyright © William C. Chang

Calculating the Private Exponent

$\Rightarrow e d \equiv 1 \bmod (p-1)(q-1)$
$=d$ is the multiplicative inverse of e modulo (p-1)(q-1)
$=$ multiplicative inverse of e is like the reciprocal of e since $e \cdot(1 / e)=1$

- let a be an integer such that $a<n$ has a multiplicative inverse modulo n only if $\operatorname{gcd}(a, n)=1$
o a has a multiplicative inverse modulo n if and only if $\operatorname{gcd}(a, n)=1$
\Rightarrow
How to compute multiplicative inverses?
- use the Extended Euclidean Algorithm

Euclidean Algorithm

\square
Input: two non-negative integers a and b with $a \geq b$ Output: $\operatorname{gcd}(a, b)$

1) while $b>0$ do:
1.1) $r \leftarrow a \bmod b, a \leftarrow b, b \leftarrow r$
2) return (a)
\Rightarrow
Ex: $a=425, b=153, \operatorname{gcd}(a, b)=17$

\mathbf{q}	\mathbf{r}	\mathbf{a}	\mathbf{b}
-	-	425	153
$\mathbf{2}$	119	153	119
$\mathbf{1}$	34	119	34
3	17	34	17
2	0	17	0

$$
\begin{aligned}
425 & =2 \cdot 153+119 \\
153 & =1 \cdot 119+34 \\
119 & =3 \cdot 34+17 \\
34 & =2 \cdot 17+0
\end{aligned}
$$

Copyright © William C. Chang

Extended Euclidean Algorithm ${ }_{\text {[HAC } 2.4]}$

\Rightarrow Input: two non-negative integers a_{0} and b_{0} with $a_{0} \geq b_{0}$ Output: $d=\operatorname{gcd}\left(a_{0}, b_{0}\right)$ and integers x, y satisfying $a_{0} x+b_{0} y=d$

1) if $b=0$ then set $d \leftarrow a_{0}, x \leftarrow 1, y \leftarrow 0$, and return (d, x, y)
2) set $a \leftarrow a_{0}, b \leftarrow b_{0}, x_{2} \leftarrow 1, x_{1} \leftarrow 0, y_{2} \leftarrow 0, y_{1} \leftarrow 1$
3) while $b>0$ do:
3.1) $q \leftarrow\lfloor a / b\rfloor, r \leftarrow a-q b, x \leftarrow x_{2}-q x_{1}, y \leftarrow y_{2}-q y_{1}$
3.2) $a \leftarrow b, b \leftarrow r, x_{2} \leftarrow x_{1}, x_{1} \leftarrow x, y_{2} \leftarrow y_{1}, y_{1} \leftarrow y$
4) set $d \leftarrow a$, $x \leftarrow x_{2}, y \leftarrow y_{2}$, and return (d, x, y)

- end of each iteration: $a_{0} x_{2}+b_{0} y_{2}=a$
\Rightarrow
Ex: $a_{0}=425, b_{0}=153, \operatorname{gcd}\left(a_{0}, b_{0}\right)=17$, and $425 \cdot 4+153 \cdot(-11)=1 才$

\mathbf{q}	\mathbf{r}	\mathbf{x}	\mathbf{y}	\mathbf{a}	\mathbf{b}	$\mathbf{x}_{\mathbf{2}}$	\mathbf{x}_{1}	$\mathbf{y}_{\mathbf{2}}$	\mathbf{y}_{1}
-	-	-	-	425	153	1	0	0	1
$\mathbf{2}$	119	1	-2	153	119	0	1	1	-2
1	34	-1	3	119	34	1	-1	-2	3
3	17	4	-11	34	17	-1	4	3	-11
2	0	-8	25	17	0	4	-8	-11	25

Copyright © William C. Cheng

The Table Method

A simple way to implement the Extended Euclidean Algorithm
ص http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

```
rem[1] = a0;
rem[2] = b0;
x[1] = 0;
x[2] = 1;
y[1] = 1;
y[2] = 0;
for (i=3; rem[i] > 1; i++) {
    rem[i] = rem[i-2] % rem[i-1];
    quo[i] = rem[i-2] / rem[i-1];
    x[i] = -quo[i] * x[i-1] + x[i-2];
    y[i] = -quo[i] * y[i-1] + y[i-2]; /* optional */
}
inverse = x[i];
```

Copyright © William C. Cheng

The Table Method (Cont...)

$\Rightarrow E x: a_{0}=425, b_{0}=153, \operatorname{gcd}\left(a_{0}, b_{0}\right)=17$, and $425 \cdot 4+153 \cdot(-11)=1 才$

\mathbf{q}	\mathbf{r}	\mathbf{x}	\mathbf{y}	\mathbf{a}	\mathbf{b}	\mathbf{x}_{2}	x_{1}	\mathbf{y}_{2}	y_{1}
-	-	-	-	425	153	1	0	0	1
2	119	1	-2	153	119	0	1	1	-2
1	34	-1	3	119	34	1	-1	-2	3
3	17	4	-11	34	17	-1	4	3	-11
2	0	-8	25	17	0	4	-8	-11	25

- Table Method:

$$
\begin{array}{rrrrr}
\text { rem[i] } & =r e m[i-2]-q u o[i] & * & \text { rem[i-1] } \\
x[i] & = & x[i-2] & -q u o[i] & * \\
y[i] & = & y[i-2] & \text { - quo[i-1] } & * \\
y[i-1]
\end{array}
$$

i quo rem	\mathbf{x}	\mathbf{y}	
$\mathbf{1}$	-425	$\mathbf{0}$	$\mathbf{1}$
2	-153	1	0

Copyright © William C. Cheng
10

The Table Method (Cont...)

\Rightarrow
Ex: $a_{0}=425, b_{0}=153, \operatorname{gcd}\left(a_{0}, b_{0}\right)=17$, and $425 \cdot 4+153 \cdot(-11)=1 才$

\mathbf{q}	\mathbf{r}	\mathbf{x}	\mathbf{y}	\mathbf{a}	\mathbf{b}	\mathbf{x}_{2}	\mathbf{x}_{1}	y_{2}	y_{1}
-	-	-	-	425	153	1	0	0	1
2	119	1	-2	153	119	0	1	1	-2
1	34	-1	3	119	34	1	-1	-2	3
3	17	4	-11	34	17	-1	4	3	-11
2	0	-8	25	17	0	4	-8	-11	25

- Table Method:

$$
\begin{array}{rrrrr}
\text { rem [i] } & =r e m[i-2]-q u o[i] & * & \text { rem [i-1] } \\
x[i] & = & x[i-2] & -q u o[i] & * \\
y[i] & = & y[i-2] & \text { - quo [in] } & * \\
y[i-1]
\end{array}
$$

i quo	rem	x	y
1	-	425	0
	-153	1	0
3	2	119	

Copyright © William C. Chang

The Table Method (Cont...)

\Rightarrow
Ex: $a_{0}=425, b_{0}=153, \operatorname{gcd}\left(a_{0}, b_{0}\right)=17$, and $425 \cdot 4+153 \cdot(-11)=1$ 亿

\mathbf{q}	\mathbf{r}	\mathbf{x}	\mathbf{y}	\mathbf{a}	\mathbf{b}	\mathbf{x}_{2}	\mathbf{x}_{1}	$\mathbf{y}_{\mathbf{2}}$	\mathbf{y}_{1}
-	-	-	-	425	153	1	0	0	1
2	119	1	-2	153	119	0	1	1	-2
1	34	-1	3	119	34	1	-1	-2	3
3	17	4	-11	34	17	-1	4	3	-11
2	0	-8	25	17	0	4	-8	-11	25

- Table Method:

$$
\begin{aligned}
& \text { rem[i] }=\text { rem[i-2] - quo[i] * rem[i-1] } \\
& x[i]=x[i-2]-q u o[i] * *[i-1] \\
& y[i]=y[i-2]-q u o[i] * y[i-1]
\end{aligned}
$$

i quo	rem	x	y
1	-	425	0
2	-	153	1
3	2	119	-2

Copyright © William C. Cheng

The Table Method (Cont...)

\Rightarrow
Ex: $a_{0}=425, b_{0}=153, \operatorname{gcd}\left(a_{0}, b_{0}\right)=17$, and $425 \cdot 4+153 \cdot(-11)=1$ 亿

\mathbf{q}	\mathbf{r}	\mathbf{x}	\mathbf{y}	\mathbf{a}	\mathbf{b}	\mathbf{x}_{2}	x_{1}	\mathbf{y}_{2}	y_{1}
-	-	-	-	425	153	1	0	0	1
2	119	1	-2	153	119	0	1	1	-2
1	34	-1	3	119	34	1	-1	-2	3
3	17	4	-11	34	17	-1	4	3	-11
2	0	-8	25	17	0	4	-8	-11	25

- Table Method:

$$
\begin{array}{rrrrr}
\text { rem [i] } & =r e m[i-2]-q u o[i] & * & \text { rem [i-1] } \\
x[i] & = & x[i-2] & -q u o[i] & * \\
y[i] & = & y[i-2]-q u o[i] & * & y[i-1]
\end{array}
$$

i quo	rem	x	y
1	-	425	0
	1		
3	-	153	1
	2	119	-2

Copyright © William C. Chang

The Table Method (Cont...)

\Rightarrow
Ex: $a_{0}=425, b_{0}=153, \operatorname{gcd}\left(a_{0}, b_{0}\right)=17$, and $425 \cdot 4+153 \cdot(-11)=1 才$

\mathbf{q}	\mathbf{r}	\mathbf{x}	\mathbf{y}	\mathbf{a}	\mathbf{b}	\mathbf{x}_{2}	x_{1}	\mathbf{y}_{2}	y_{1}
-	-	-	-	425	153	1	0	0	1
2	119	1	-2	153	119	0	1	1	-2
1	34	-1	3	119	34	1	-1	-2	3
3	17	4	-11	34	17	-1	4	3	-11
2	0	-8	25	17	0	4	-8	-11	25

- Table Method:

$$
\begin{array}{rrrrr}
\text { rem [i] } & =r e m[i-2]-q u o[i] & * & \text { rem [i-1] } \\
x[i] & = & x[i-2] & -q u o[i] & * \\
y[i] & = & y[i-2]-q u o[i] & * & y[i-1]
\end{array}
$$

i quo		rem	x
1	-	y25	0
2	-153	1	0
3	2	119	-2
4	1	34	3

Copyright © William C. Chang

The Table Method (Cont...)

\Rightarrow
Ex: $a_{0}=425, b_{0}=153, \operatorname{gcd}\left(a_{0}, b_{0}\right)=17$, and $425 \cdot 4+153 \cdot(-11)=1 才$

\mathbf{q}	\mathbf{r}	\mathbf{x}	\mathbf{y}	\mathbf{a}	\mathbf{b}	\mathbf{x}_{2}	x_{1}	\mathbf{y}_{2}	y_{1}
-	-	-	-	425	153	1	0	0	1
2	119	1	-2	153	119	0	1	1	-2
1	34	-1	3	119	34	1	-1	-2	3
3	17	4	-11	34	17	-1	4	3	-11
2	0	-8	25	17	0	4	-8	-11	25

- Table Method:

$$
\begin{array}{rrrrr}
\text { rem [i] } & =r e m[i-2]-q u o[i] & * & \text { rem [i-1] } \\
x[i] & = & x[i-2] & -q u o[i] & * \\
y[i] & = & y[i-2]-q u o[i] & * & y[i-1]
\end{array}
$$

i quo	rem	x	y	
1	-	425	0	1
2	-	153	1	0
3	2	119	-2	1
4	1	34	3	-1
5	3	17	-11	4

Copyright © William C. Chang

The Table Method (Cont...)

\Rightarrow
Ex: $a_{0}=425, b_{0}=153, \operatorname{gcd}\left(a_{0}, b_{0}\right)=17$, and $425 \cdot 4+153 \cdot(-11)=1 才$

\mathbf{q}	\mathbf{r}	\mathbf{x}	\mathbf{y}	\mathbf{a}	\mathbf{b}	\mathbf{x}_{2}	\mathbf{x}_{1}	$\mathbf{y}_{\mathbf{2}}$	\mathbf{y}_{1}
-	-	-	-	425	153	1	0	0	1
2	119	1	-2	153	119	0	1	1	-2
1	34	-1	3	119	34	1	-1	-2	3
3	17	4	-11	34	17	-1	4	3	-11
2	0	-8	25	17	0	4	-8	-11	25

- Table Method:

$$
\begin{array}{rrrrr}
\text { rem [i] } & =r e m[i-2]-q u o[i] & * & \text { rem [i-1] } \\
x[i] & = & x[i-2] & -q u o[i] & * \\
y[i] & = & y[i-2]-q u o[i] & * & y[i-1]
\end{array}
$$

i quo	rem	x	y	
1	-	425	0	1
2	-	153	1	0
3	2	119	-2	1
4	1	34	3	-1
5	3	17	-11	4
6	2	0	25	-9

Copyright © William C. Cheng

Multiplicative Inverse Example

What is the multipliactive inverse of 3 modulo 40 ?
$=$ let $a=40$ and $b=3$, formulate $a x+b y=d$
$=$ since 3 and 40 are relatively prime, $d=1$

- after solving $a x+b y=1(\bmod a)$
$0 x$ is really irrelavent since $a=0(\bmod a)$
- y is the multiplicative of $b(\bmod a)$
- use the Table Method

quo	rem	x
-	40	0
-	3	1
13	1	-13

O the multipliactive inverse of $3(\bmod 40)$ is $-13 \equiv 27(\bmod 40)$
$\diamond 3 \cdot 27=1(\bmod 40)$

Security of RSA

Avoid known pitfalls

- p and q cannot be small
- always add salt (i.e., nonce) to a message
- introduce structural constraints on plaintext messages, e.g., repeat bits in original input message before encryption
o after decryption, check constraints
- if constraints not met, do not send back decrypted data
\Rightarrow
Breaking RSA is believed to be equivalent to solving the unique factorization problem
- tools for unique factorization of large products of primes
- elliptic curve factoring algorithm
- quadratic sieve or general number field sieve
\diamond although subexponential, if p and q are large enough, these methods are not considered "computationally feasible" to factor (4) 90

Copyright © William C. Cheng

Other Public Key Cryptosystems

Diffie-Hellman

= first public key cryptosystem

- Diffie and Hellman were often cited as creators of public key cryptosystem
- security based on the discrete logarithm problem
- for any integers g, p, n : find k such that $g^{k} \bmod p=n$
\Rightarrow
Parameters of the Diffie-Hellman cryptosystem
- prime p (the modulus) and g (the generator)

○ $1 \leq g \leq p-2$ and for $i=0,1,2,3, \ldots p-2, g^{i}$ generates all values between 1 through p-1

- every entity picks a private key k

○ its public key $K=g^{k}{ }_{\bmod p}$
\Rightarrow
Diffie-Hellman is not strickly a public key cryptosystem

- basically a key exchange system

Diffie-Hellman Example

Diffie-Hellman example

- Alice has private key x and public key $X=g^{x} \bmod p$
- Bob has private key y and public key $Y=g^{y} \bmod p$
$=$ Alice wants to communicate with Bob
- gets Bob's public key Y and computes $Z=Y^{X} \bmod p$
- derive a key z from Z using a pre-defined public algorithm (e.g., $\left.m \cdot Y^{X} \bmod p\right)$
- encrypts a message with z
- when Bob gets an encrypted message from Alice

○ gets Alice's public key X and computes $Z^{\prime}=X^{y} \bmod p$

- $Z^{\prime}=Z=g^{X Y} \bmod p$
o derive a symmetric key z^{\prime} from Z^{\prime} using a pre-defined public algorithm
o decrypts Alice's message with $z^{\prime}=z$

Copyright © William C. Cheng

Diffie-Hellman Numeric Example

\Rightarrow Diffie-Hellman numeric example
= $p=53, g=17$ (which can be shown to be a generator)

- $x=5, X=g^{x}{ }_{\bmod } p=17^{5} \bmod 53=40$
- $y=7, Y=g^{y} \bmod p=17^{7} \bmod 53=6$
- X^{y} mod $p=40^{7} \bmod 53=38$
$=Y^{X}{ }_{\text {mod }} p=6^{5} \bmod 53=38$

Other Public Key Cryptosystems (Cont...)

EIGamal (signature, encryption)
= ex: (encryption and decryption)

- choose a prime p, and two random numbers $g, x<p$
- public key is g, p, and $X=g^{X} \bmod p$
- private key is x; to obtain from public key requires extracting discrete log
O to encrypt message \mathbf{m} for an entity with private key \boldsymbol{y} and public key $Y=g^{y} \bmod p$, compute $c=m \cdot g^{x y} \bmod p$
\diamond recall that $g^{x y} \bmod p=X^{y} \bmod p=Y^{X} \bmod p$
\bigcirc to decrypt message m, first compute $g^{-x y} \bmod p$
$\diamond g^{-k} \cdot g^{k} \equiv 1 \bmod p$
0 then compute $c \cdot g^{-x y} \bmod p=m \cdot g^{x y} \cdot g^{-x y} \bmod p=m$
- mostly used for signatures

Copyright © William C. Cheng

Other Public Key Cryptosystems (Cont...)

Elliptic curve cryptosystems
$=y^{2}=x^{3}+a x^{2}+b x+c$

- elliptic curves were featured in Fermat's Last Theorem proof
- Fermat's Last Theorem:
\diamond cannot find x, y, z, such that $x^{n}+y^{n}=z^{n}$ if $n>2$ - elliptic curves (e.g., mod n or arithmetic in $G F\left(2^{8}\right)$) used to implement existing public-key systems (e.g., RSA, EIGamal)
○ allow for shorter keys and greater efficiency
- application in battery operated devices

Combining Public-key and Secret-key Algorithms

Public-key algorithms are orders of magnitude slower than secret-key algorithms

- not practical to encrypt a large document using public-key cryptography

Bulk data encryption

- combine public-key (e.g., RSA) and secret-key (e.g., 3DES)
- generate session key (random)
- encrypt session key with receiver's RSA public key
\diamond session key must be smaller than the public modulus
- 3DES encrypt data with session key
- receiver decrypts with RSA private key to get session key, then decrypts data with session key
- basically a method of key exchange

Another Way to Exchange Keys

\Rightarrow Diffie-Hellman key exchange

- choose large prime p, and generator g
- for any n in $(1, p-1)$, there exists a k such that $g^{k} \equiv n \bmod p$
- Alice, Bob select secret values x, y, respectively
- Alice sends $X=g^{X} \bmod p$
- Bob sends $Y=g^{y} \bmod p$
- both compute $g^{x y} \bmod p$, a shared secret
- can be used as keying materialDiffie-Hellman key exchange is vulnerable to the man-in-the-middle attack
- Eve selects z and computes $Z=g^{Z} \bmod p$
- Eve establishes a channel with Alice using $g^{x z} \bmod p$
- Eve establishes a channel with Bob using $g^{y z} \bmod p$
- Alice and Bob cannot know that Eve is decrypting and re-encrypting messages
Copyright © William C. Cheng

