CS530
Public Key Cryptography
Bill Cheng

http://merlot.usc.edu/cs530-s10
Public Key Cryptography

- aka asymmetric cryptography
- Based on some NP-complete problem
 - traveling salesman problem
 - n cities, connected
 - find shortest tour, all cities must be visited
 - solution complexity is $n!$
 - unique factorization
 - factor an integer into product of prime numbers (unique solution)
 - discrete logarithms
 - for any integers b, n, y: Find x such that $b^x \mod n = y$
 - modular arithmetic produces folding
A Short Note on Primes

Why are public keys (and private keys) so large?
→ because key space is *sparse*

What is the probability that some large number p is prime?
→ about 1 in $1/\ln(p)$
 ♦ 2 digit numbers: 25 primes (1 in 4)
 ♦ 10 digit numbers: 1 in 23 are primes
 ♦ 100 digit numbers: 1 in 230 are primes
 ♦ but... the more digits, the more primes!
→ when $p \approx 2^{512} \approx 10^{150}$, equals about 1 in 355
 ♦ about 1 in 355^2 numbers $\approx 2^{1024}$ is product of two primes (and therefore valid RSA modulo)
RSA

Rivest, Shamir, Adleman

Generate two primes: \(p, q \)
- let \(n = pq \)
- choose \(e \), a small number, relatively prime to \((p-1)(q-1) \)
- choose \(d (\text{< } n) \) such that \(ed \equiv 1 \mod (p-1)(q-1) \)

RSA public-key is \(< e, n >\) (\(e \) is called the public exponent)
RSA private-key is \(< d, n >\) (\(d \) is called the private exponent)
- \(n \) is called the public modulus

Then, \(c = m^e \mod n \) and \(m = c^d \mod n \)
- can also encrypt with \(d \) and decrypt with \(e \)
 i.e., \(c = m^d \mod n \) and \(m = c^e \mod n \)

Note: encryption is fast (because \(e \) is small) and decryption is slow
An Example

Let \(p = 5, q = 11, e = 3 \) (recall that \(p \) & \(q \) are primes)
- then \(n = 55 \) (recall that \(n = pq \))
- pick \(e = 3 \) (recall that \(e \) is relatively prime to \((p-1)(q-1) \))
- \(d = 27 \), since \((3)(27) \mod 40 = 1 \)
 (recall that \(ed \equiv 1 \mod (p-1)(q-1) \))

If \(m = 7 \), then \(c = 7^3 \mod 55 = 343 \mod 55 = 13 \)
Then \(m \) should be = \(13^27 \mod 55 \)

Computing \(13^{27} \mod 55 \)
- \(13^1 \mod 55 = 13, \ 13^2 \mod 55 = 4, \ 13^4 \mod 55 = 16, \)
 \(13^8 \mod 55 = 36, \ 13^{16} \mod 55 = 31 \)
- \(27 = 1+2+8+16 \)
- \(13^{27} \mod 55 = (13)(4)(36)(31) \mod 55 = \)
 \((1872 \mod 55)(31) \mod 55 = 62 \mod 55 = 7 \) (check)
Calculating the Private Exponent

- \(ed \equiv 1 \mod (p-1)(q-1) \)
- \(d \) is the multiplicative inverse of \(e \) modulo \((p-1)(q-1) \)
- multiplicative inverse of \(e \) is like the reciprocal of \(e \) since \(e \cdot (1/e) = 1 \)
- let \(a \) be an integer such that \(a < n \) has a multiplicative inverse modulo \(n \) only if \(\gcd(a,n)=1 \)
 - \(a \) has a multiplicative inverse modulo \(n \) if and only if \(\gcd(a,n)=1 \)

How to compute multiplicative inverses?
- use the Extended Euclidean Algorithm
Euclidean Algorithm

Input: two non-negative integers \(a \) and \(b \) with \(a \geq b \)

Output: \(\text{gcd}(a,b) \)

1) while \(b > 0 \) do:
 1.1) \(r \leftarrow a \mod b, a \leftarrow b, b \leftarrow r \)

2) return \((a) \)

Ex: \(a = 425, b = 153, \text{gcd}(a,b) = 17 \)

<table>
<thead>
<tr>
<th>q</th>
<th>r</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>425</td>
<td>153</td>
</tr>
<tr>
<td>2</td>
<td>119</td>
<td>153</td>
<td>119</td>
</tr>
<tr>
<td>1</td>
<td>34</td>
<td>119</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>34</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>17</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
425 = 2 \cdot 153 + 119 \\
153 = 1 \cdot 119 + 34 \\
119 = 3 \cdot 34 + 17 \\
34 = 2 \cdot 17 + 0
\]
Extended Euclidean Algorithm [HAC 2.4]

Input: two non-negative integers a_0 and b_0 with $a_0 \geq b_0$

Output: $d = \text{gcd}(a_0, b_0)$ and integers x, y satisfying $a_0x + b_0y = d$

1) if $b = 0$ then set $d \leftarrow a_0$, $x \leftarrow 1$, $y \leftarrow 0$, and return (d, x, y)
2) set $a \leftarrow a_0$, $b \leftarrow b_0$, $x_2 \leftarrow 1$, $x_1 \leftarrow 0$, $y_2 \leftarrow 0$, $y_1 \leftarrow 1$
3) while $b > 0$ do:
 3.1) $q \leftarrow \lfloor a/b \rfloor$, $r \leftarrow a - qb$, $x \leftarrow x_2 - qx_1$, $y \leftarrow y_2 - qy_1$
 3.2) $a \leftarrow b$, $b \leftarrow r$, $x_2 \leftarrow x_1$, $x_1 \leftarrow x$, $y_2 \leftarrow y_1$, $y_1 \leftarrow y$
4) set $d \leftarrow a$, $x \leftarrow x_2$, $y \leftarrow y_2$, and return (d, x, y)

end of each iteration: $a_0x_2 + b_0y_2 = a$

Ex: $a_0 = 425$, $b_0 = 153$, $\text{gcd}(a_0, b_0) = 17$, and $425 \cdot 4 + 153 \cdot (-11) = 17$

<table>
<thead>
<tr>
<th>q</th>
<th>r</th>
<th>x</th>
<th>y</th>
<th>a</th>
<th>b</th>
<th>x_2</th>
<th>x_1</th>
<th>y_2</th>
<th>y_1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>425</td>
<td>153</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>119</td>
<td>1</td>
<td>-2</td>
<td>153</td>
<td>119</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>1</td>
<td>34</td>
<td>-1</td>
<td>3</td>
<td>119</td>
<td>34</td>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>4</td>
<td>-11</td>
<td>34</td>
<td>17</td>
<td>-1</td>
<td>4</td>
<td>3</td>
<td>-11</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>-8</td>
<td>25</td>
<td>17</td>
<td>4</td>
<td>-8</td>
<td>-11</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
The Table Method

A simple way to implement the Extended Euclidean Algorithm

http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

```plaintext
rem[1] = a0;
rem[2] = b0;
x[1] = 0;
x[2] = 1;
y[1] = 1;
y[2] = 0;
for (i=3; rem[i] > 1; i++) {
    rem[i] = rem[i-2] % rem[i-1];
    quo[i] = rem[i-2] / rem[i-1];
    x[i] = -quo[i] * x[i-1] + x[i-2];
    y[i] = -quo[i] * y[i-1] + y[i-2]; /* optional */
}
inverse = x[i];
```
The Table Method (Cont...)

Ex: \(a_0 = 425, b_0 = 153, \gcd(a_0, b_0) = 17\), and \(425 \cdot 4 + 153 \cdot (-11) = 17\)

<table>
<thead>
<tr>
<th>q</th>
<th>r</th>
<th>x</th>
<th>y</th>
<th>a</th>
<th>b</th>
<th>x_2</th>
<th>x_1</th>
<th>y_2</th>
<th>y_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>425</td>
<td>153</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>119</td>
<td>1</td>
<td>-2</td>
<td>153</td>
<td>119</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td>1</td>
<td>34</td>
<td>-1</td>
<td>3</td>
<td>119</td>
<td>34</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>4</td>
<td>-11</td>
<td>34</td>
<td>17</td>
<td>-1</td>
<td>4</td>
<td>3</td>
<td>-11</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>-8</td>
<td>25</td>
<td>17</td>
<td>0</td>
<td>4</td>
<td>-8</td>
<td>-11</td>
<td>25</td>
</tr>
</tbody>
</table>

Table Method:

\[
\begin{align*}
\text{rem}[i] &= \text{rem}[i-2] - \text{quo}[i] \cdot \text{rem}[i-1] \\
\text{x}[i] &= \text{x}[i-2] - \text{quo}[i] \cdot \text{x}[i-1] \\
\text{y}[i] &= \text{y}[i-2] - \text{quo}[i] \cdot \text{y}[i-1]
\end{align*}
\]

<table>
<thead>
<tr>
<th>i</th>
<th>quo</th>
<th>rem</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>425</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>153</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Copyright © William C. Cheng
The Table Method (Cont...)

Ex: \(a_0 = 425, b_0 = 153, \gcd(a_0, b_0) = 17\), and \(425 \cdot 4 + 153 \cdot (-11) = 17\)

<table>
<thead>
<tr>
<th>q</th>
<th>r</th>
<th>x</th>
<th>y</th>
<th>a</th>
<th>b</th>
<th>x₂</th>
<th>x₁</th>
<th>y₂</th>
<th>y₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>425</td>
<td>153</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>119</td>
<td>1</td>
<td>-2</td>
<td>153</td>
<td>119</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td>1</td>
<td>34</td>
<td>-1</td>
<td>3</td>
<td>119</td>
<td>34</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>4</td>
<td>-11</td>
<td>34</td>
<td>17</td>
<td>-1</td>
<td>4</td>
<td>3</td>
<td>-11</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>-8</td>
<td>25</td>
<td>17</td>
<td>0</td>
<td>4</td>
<td>-8</td>
<td>-11</td>
<td>25</td>
</tr>
</tbody>
</table>

Table Method:

\[
\text{rem}[i] = \text{rem}[i-2] - \text{quo}[i] \times \text{rem}[i-1] \\
\text{x}[i] = \text{x}[i-2] - \text{quo}[i] \times \text{x}[i-1] \\
\text{y}[i] = \text{y}[i-2] - \text{quo}[i] \times \text{y}[i-1]
\]

<table>
<thead>
<tr>
<th>i</th>
<th>quo</th>
<th>rem</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>425</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>153</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>119</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Table Method (Cont...)

Ex: \(a_0 = 425, \ b_0 = 153, \ \text{gcd}(a_0, b_0) = 17, \) and \(425 \cdot 4 + 153 \cdot (-11) = 17 \)

<table>
<thead>
<tr>
<th>q</th>
<th>r</th>
<th>x</th>
<th>y</th>
<th>a</th>
<th>b</th>
<th>x_2</th>
<th>x_1</th>
<th>y_2</th>
<th>y_1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>425</td>
<td>153</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>119</td>
<td>1</td>
<td>-2</td>
<td>153</td>
<td>119</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td>1</td>
<td>34</td>
<td>-1</td>
<td>3</td>
<td>119</td>
<td>34</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>4</td>
<td>-11</td>
<td>34</td>
<td>17</td>
<td>-1</td>
<td>4</td>
<td>3</td>
<td>-11</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>-8</td>
<td>25</td>
<td>17</td>
<td>0</td>
<td>4</td>
<td>-8</td>
<td>-11</td>
<td>25</td>
</tr>
</tbody>
</table>

Table Method:

\[
\begin{align*}
\text{rem}[i] &= \text{rem}[i-2] - \text{quo}[i] \times \text{rem}[i-1] \\
\text{x}[i] &= \text{x}[i-2] - \text{quo}[i] \times \text{x}[i-1] \\
\text{y}[i] &= \text{y}[i-2] - \text{quo}[i] \times \text{y}[i-1]
\end{align*}
\]

<table>
<thead>
<tr>
<th>i</th>
<th>quo</th>
<th>rem</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>425</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>153</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>119</td>
<td>-2</td>
<td></td>
</tr>
</tbody>
</table>
The Table Method (Cont...)

Ex: \(a_0 = 425, \ b_0 = 153, \ \gcd(a_0, b_0) = 17, \) and \(425 \cdot 4 + 153 \cdot (-11) = 17 \)

<table>
<thead>
<tr>
<th>q</th>
<th>r</th>
<th>x</th>
<th>y</th>
<th>a</th>
<th>b</th>
<th>x_2</th>
<th>x_1</th>
<th>y_2</th>
<th>y_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>425</td>
<td>153</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>119</td>
<td>1</td>
<td>-2</td>
<td>153</td>
<td>119</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td>1</td>
<td>34</td>
<td>-1</td>
<td>3</td>
<td>119</td>
<td>34</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>4</td>
<td>-11</td>
<td>34</td>
<td>17</td>
<td>-1</td>
<td>4</td>
<td>3</td>
<td>-11</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>-8</td>
<td>25</td>
<td>17</td>
<td>0</td>
<td>4</td>
<td>-8</td>
<td>-11</td>
<td>25</td>
</tr>
</tbody>
</table>

Table Method:

\[
\begin{align*}
\text{rem}[i] &= \text{rem}[i-2] - \text{quo}[i] \times \text{rem}[i-1] \\
\text{x}[i] &= \text{x}[i-2] - \text{quo}[i] \times \text{x}[i-1] \\
\text{y}[i] &= \text{y}[i-2] - \text{quo}[i] \times \text{y}[i-1]
\end{align*}
\]

<table>
<thead>
<tr>
<th>i \</th>
<th>quo</th>
<th>rem</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>425</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>153</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>119</td>
<td>-2</td>
<td>1</td>
</tr>
</tbody>
</table>
The Table Method (Cont...)

Ex: $a_0 = 425$, $b_0 = 153$, $gcd(a_0, b_0) = 17$, and $425 \cdot 4 + 153 \cdot (-11) = 17$

<table>
<thead>
<tr>
<th>q</th>
<th>r</th>
<th>x</th>
<th>y</th>
<th>a</th>
<th>b</th>
<th>x_2</th>
<th>x_1</th>
<th>y_2</th>
<th>y_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>425</td>
<td>153</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>119</td>
<td>1</td>
<td>-2</td>
<td>153</td>
<td>119</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td>1</td>
<td>34</td>
<td>-1</td>
<td>3</td>
<td>119</td>
<td>34</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>4</td>
<td>-11</td>
<td>34</td>
<td>17</td>
<td>-1</td>
<td>4</td>
<td>3</td>
<td>-11</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>-8</td>
<td>25</td>
<td>17</td>
<td>0</td>
<td>4</td>
<td>-8</td>
<td>-11</td>
<td>25</td>
</tr>
</tbody>
</table>

Table Method:

- $rem[i] = rem[i-2] - quo[i] \times rem[i-1]$
- $x[i] = x[i-2] - quo[i] \times x[i-1]$
- $y[i] = y[i-2] - quo[i] \times y[i-1]$

<table>
<thead>
<tr>
<th>i</th>
<th>quo</th>
<th>rem</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>425</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>153</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>119</td>
<td>-2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>34</td>
<td>3</td>
<td>-1</td>
</tr>
</tbody>
</table>
The Table Method (Cont. . .)

Ex: \(a_0 = 425, \ b_0 = 153, \ \gcd(a_0,b_0) = 17, \) and \(425 \cdot 4 + 153 \cdot (-11) = 17 \)

<table>
<thead>
<tr>
<th>q</th>
<th>r</th>
<th>x</th>
<th>y</th>
<th>a</th>
<th>b</th>
<th>x_2</th>
<th>x_1</th>
<th>y_2</th>
<th>y_1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-2</td>
<td>-1</td>
<td>425</td>
<td>153</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>119</td>
<td>1</td>
<td>-2</td>
<td>153</td>
<td>119</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td>1</td>
<td>34</td>
<td>-1</td>
<td>3</td>
<td>119</td>
<td>34</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>4</td>
<td>-11</td>
<td>34</td>
<td>17</td>
<td>-1</td>
<td>4</td>
<td>3</td>
<td>-11</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>-8</td>
<td>25</td>
<td>17</td>
<td>0</td>
<td>4</td>
<td>-8</td>
<td>-11</td>
<td>25</td>
</tr>
</tbody>
</table>

Table Method:

\[
\begin{align*}
\text{rem}[i] &= \text{rem}[i-2] - \text{quo}[i] \times \text{rem}[i-1] \\
\text{x}[i] &= \text{x}[i-2] - \text{quo}[i] \times \text{x}[i-1] \\
\text{y}[i] &= \text{y}[i-2] - \text{quo}[i] \times \text{y}[i-1]
\end{align*}
\]

<table>
<thead>
<tr>
<th>i</th>
<th>quo</th>
<th>rem</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>425</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>153</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>119</td>
<td>-2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>34</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>17</td>
<td>-11</td>
<td>4</td>
</tr>
</tbody>
</table>
The Table Method (Cont...)

Ex: \(a_0 = 425, b_0 = 153, \gcd(a_0, b_0) = 17\), and \(425 \cdot 4 + 153 \cdot (-11) = 17\)

<table>
<thead>
<tr>
<th>q</th>
<th>r</th>
<th>x</th>
<th>y</th>
<th>a</th>
<th>b</th>
<th>x_2</th>
<th>x_1</th>
<th>y_2</th>
<th>y_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>425</td>
<td>153</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>119</td>
<td>1</td>
<td>-2</td>
<td>153</td>
<td>119</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td>1</td>
<td>34</td>
<td>-1</td>
<td>3</td>
<td>119</td>
<td>34</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>4</td>
<td>-11</td>
<td>34</td>
<td>17</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>-11</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>-8</td>
<td>25</td>
<td>17</td>
<td>0</td>
<td>4</td>
<td>-8</td>
<td>-11</td>
<td>25</td>
</tr>
</tbody>
</table>

- Table Method:

\[
\begin{align*}
\text{rem}[i] &= \text{rem}[i-2] - \text{quo}[i] \times \text{rem}[i-1] \\
x[i] &= x[i-2] - \text{quo}[i] \times x[i-1] \\
y[i] &= y[i-2] - \text{quo}[i] \times y[i-1]
\end{align*}
\]

<table>
<thead>
<tr>
<th>i</th>
<th>quo</th>
<th>rem</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>425</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>153</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>119</td>
<td>-2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>34</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>17</td>
<td>-11</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>0</td>
<td>25</td>
<td>-9</td>
</tr>
</tbody>
</table>
Multiplicative Inverse Example

What is the multipliactive inverse of 3 modulo 40?

- let $a=40$ and $b=3$, formulate $ax + by = d$
- since 3 and 40 are relatively prime, $d = 1$
- after solving $ax + by = 1 \ (mod \ a)$
 - x is really irrelavent since $a = 0 \ (mod \ a)$
 - y is the multiplicative of $b \ (mod \ a)$
- use the Table Method

<table>
<thead>
<tr>
<th>quo</th>
<th>rem</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>-</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>-13</td>
</tr>
</tbody>
</table>

- the multipliative inverse of $3 \ (mod \ 40)$ is $-13 \equiv 27 \ (mod \ 40)$
- $3 \cdot 27 = 1 \ (mod \ 40)$
Security of RSA

Avoid known pitfalls

- p and q cannot be small
- always add salt (i.e., nonce) to a message
- introduce structural constraints on plaintext messages, e.g., repeat bits in original input message before encryption
 - after decryption, check constraints
 - if constraints not met, do not send back decrypted data

Breaking RSA is believed to be equivalent to solving the unique factorization problem

- tools for unique factorization of large products of primes
 - elliptic curve factoring algorithm
 - quadratic sieve or general number field sieve
 - although subexponential, if p and q are large enough, these methods are not considered "computationally feasible" to factor
Other Public Key Cryptosystems

Diffie-Hellman
- first public key cryptosystem
- Diffie and Hellman were often cited as creators of public key cryptosystem
- security based on the discrete logarithm problem
 - for any integers g, p, n: find k such that $g^k \mod p = n$

Parameters of the Diffie-Hellman cryptosystem
- prime p (the modulus) and g (the generator)
 - $1 \leq g \leq p-2$ and for $i=0,1,2,3,...p-2$, g^i generates all values between 1 through $p-1$
- every entity picks a private key k
 - its public key $K = g^k \mod p$

Diffie-Hellman is not strictly a public key cryptosystem
- basically a key exchange system
Diffie-Hellman Example

Diffie-Hellman example

- Alice has private key x and public key $X = g^x \mod p$
- Bob has private key y and public key $Y = g^y \mod p$
- Alice wants to communicate with Bob
 - gets Bob’s public key Y and computes $Z = Y^x \mod p$
 - derive a key z from Z using a pre-defined public algorithm (e.g., $m \cdot Y^x \mod p$)
 - encrypts a message with z
- when Bob gets an encrypted message from Alice
 - gets Alice’s public key X and computes $Z' = X^y \mod p$
 - $Z' = Z = g^{xy} \mod p$
 - derive a symmetric key z' from Z' using a pre-defined public algorithm
 - decrypts Alice’s message with $z' = z$
Diffie-Hellman Numeric Example

Diffie-Hellman numeric example

- \(p = 53, g = 17 \) (which can be shown to be a generator)
- \(x = 5, X = g^x \mod p = 17^5 \mod 53 = 40 \)
- \(y = 7, Y = g^y \mod p = 17^7 \mod 53 = 6 \)
- \(X^y \mod p = 40^7 \mod 53 = 38 \)
- \(Y^x \mod p = 6^5 \mod 53 = 38 \)
Other Public Key Cryptosystems (Cont...)

ElGamal (signature, encryption)

- ex: (encryption and decryption)
 - choose a prime p, and two random numbers $g, x < p$
 - public key is g, p, and $X = g^x \mod p$
 - private key is x; to obtain from public key requires extracting discrete log
 - to encrypt message m for an entity with private key y and public key $Y = g^y \mod p$, compute $c = m \cdot g^{xy} \mod p$
 - recall that $g^{xy} \mod p = X^y \mod p = Y^x \mod p$
 - to decrypt message m, first compute $g^{-xy} \mod p$
 - $g^{-k} \cdot g^k \equiv 1 \mod p$
 - then compute $c \cdot g^{-xy} \mod p = m \cdot g^{xy} \cdot g^{-xy} \mod p = m$
- mostly used for signatures
Elliptic curve cryptosystems

- $y^2 = x^3 + ax^2 + bx + c$
- elliptic curves were featured in Fermat’s Last Theorem proof
 - Fermat’s Last Theorem:
 - cannot find x, y, z, such that $x^n + y^n = z^n$ if $n > 2$
- elliptic curves (e.g., $\mod n$ or arithmetic in $GF(2^8)$) used to implement existing public-key systems (e.g., RSA, ElGamal)
 - allow for shorter keys and greater efficiency
 - application in battery operated devices
Combining Public-key and Secret-key Algorithms

- Public-key algorithms are orders of magnitude slower than secret-key algorithms
 - not practical to encrypt a large document using public-key cryptography

- Bulk data encryption
 - combine public-key (e.g., RSA) and secret-key (e.g., 3DES)
 - generate session key (random)
 - encrypt session key with receiver’s RSA public key
 - session key must be smaller than the public modulus
 - 3DES encrypt data with session key
 - receiver decrypts with RSA private key to get session key, then decrypts data with session key
 - basically a method of *key exchange*
Another Way to Exchange Keys

Diffie-Hellman key exchange
- choose large prime p, and generator g
 - for any n in $(1, p-1)$, there exists a k such that $g^k \equiv n \mod p$
- Alice, Bob select secret values x, y, respectively
- Alice sends $X = g^x \mod p$
- Bob sends $Y = g^y \mod p$
- both compute $g^{xy} \mod p$, a shared secret
 - can be used as keying material

Diffie-Hellman key exchange is vulnerable to the man-in-the-middle attack
- Eve selects z and computes $Z = g^z \mod p$
- Eve establishes a channel with Alice using $g^{xz} \mod p$
- Eve establishes a channel with Bob using $g^{yz} \mod p$
- Alice and Bob cannot know that Eve is decrypting and re-encrypting messages