Key Management &

C$S530

Distribution
Bill Cheng

http://merlot.usc.edu/cs530-s10

\ Copyright © William C. Cheng

1m0

J

CSCI 530, Spring 2010 '\
Using Cryptography

ﬁ> Provides foundation for security services
= touched upon one form of key exchange

ﬁ} But can it bootstrap itself?
= must establish shared key
= straightforward plan
Q one side generates key
Q transmits key to other side
Q but how?

\ Copyright © William C. Cheng

- CSCI 530, Spring 2010 ==
Two Problems
ﬁ> Peer-to-peer key sharing
G> Prob 1: Known peer, insecure channel

i} Prob 2: Secure channel, unknown peer

\ Copyright © William C. Cheng J/

CSCI 530, Spring 2010 '\

Man in the Middle of DH

ﬁ> DH provides key exchange, but no authentication

= you don’t really know you have a secure channel

= man-in-the-middle

= you exchange a key with eavesdropper (man-in-the-middle),
who exchanges key with the person you think are you
talking to directly

= eavesdropper relays all messages, but observes or
changes them in transit

= solutions
Q published public values
Q authenticated DH (signed or encrypt DH value)
Q encrypt the DH exchange
Q subsequently send has of DH value, with secret

\ Copyright © William C. Cheng

7 CSCI 530, Spring 2010 '\

Security Through Obscurity?

ﬁ> Caesar ciphers
= very simple permutation
= only 25 different cases
= relies strictly on no one knowing the method
= key exchange is really method exchange

\ Copyright © William C. Cheng J/

CSCI 530, Spring 2010 '\

Passwords

ﬁ> Reduces permutation space to key space
= Caesar cipher: one-letter "key"

= 10-letter key for MSC reduces 26! (~4x10 20) to »6P10

Q but hard to remember 10-letter key

6

= 8-byte key for DES reduces 2 N (~1O10

)to 2°° (~10'")
G> But key is more compact and perhaps more readily
exchanged out of band
= N person
= by telephone (especially for public keys)

ﬁ> Most security depends on some out of band bootstrap
= exceptions? are they really exceptions?
Q DH provided key exchange, but not authentication

1m0

J

\ Copyright © William C. Cheng

7 CSCI 530, Spring 2010 '\

The German Enigma Machine

ﬁ> Rotor-based plaintext —» A A
= rotors are wired B B
C YY) C
codewheels D D —» ciphertext
= a rotor implements E E

a fixed mono-alphabetic substitution

= polyalphabetic substitution (with a long period) - the
encipherment of each plaintext character causes various
rotors to move, like an odometer (but not exactly)

ﬁ> Broken first by Polish, then by English
= not as easily as widely regarded

i} Weaknesses in key distribution
= day keys plus scramblers (using subkeys)
= "session keys" encrypted in duplicate
= Enigma did not use OFB/CFB] 1|0

\ Copyright © William C. Cheng J/

Secret Key Distribution

Bill Cheng
http://merlot.usc.edu/cs530-s10

8
\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Peer-to-Peer Distribution

ﬁ> Technically easy
= by hand!
= Or have a day key

ﬁ> But it doesn’t scale
= hundreds of servers...
= times thousands of users...
= Yyields ~ million keys

ﬁ> Centralized key server
= puilding up to the Needham-Schroeder approach

\ Copyright © William C. Cheng J/

CSCI 530, Spring 2010 '\

Needham and Schroeder - Basic ldea
ﬁ> User sends request to KDC: {s}

ﬁ> KDC generates a random key: K (¢
= encrypted twice, each with a different key
Q {KC,S}KC’ {KC,S}KS
Q {K¢stK¢ isthe credentials (contains session key)
Q {K¢s}Kg is the ticket
Q ticketis opaque to the client, it is meant to be forwarded
with application request

i} No keys ever traverse the net in the clear

\ Copyright © William C. Cheng

\ Copyright © William C. Cheng

KDC

CSCI 530, Spring 2010 '\

7 CSCI 530, Spring 2010 '\

KDC (Cont...)

Ao

\ Copyright © William C. Cheng J/

\ Copyright © William C. Cheng

S

KDC (Cont...)

Ao,

{K C,S}K Cc
{K C,S}KS

CSCI 530, Spring 2010 '\

ﬁ> How does user know session key is encrypted for the server?

And vice versa?

ﬁ} Attacker intercepts initial request, and substitutes own name

for server

= can now read all of user's messages intended for server

Problem #1

CSCI 530, Spring 2010 '\

\ Copyright © William C. Cheng

7 CSCI 530, Spring 2010 '\

Problem #1 (Cont...)

A
Ka
X

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Problem #1 (Cont...)

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Problem #1 (Cont...)

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Solution #1

ﬁ> Add names to ticket, credentials
= request looks like {c, s}
= {K¢s, S}K¢ and {K s, C}K g, respectively

G> Both sides can verify intended target for key sharing
i} This is basic Needham-Schroeder

>
&

b Kea XK
{Kc,a’ CIK 4
C /
Ke L1110

\ Copyright © William C. Cheng J/

CSCI 530, Spring 2010 '\

Problem #2
ﬁ> How can user and server know that session key is fresh?

ﬁ> Attacker intercepts and records old KDC reply, then inserts

this in response to future requests
= can now read all traffic between user and server

\ Copyright © William C. Cheng

7 CSCI 530, Spring 2010 '\

Problem #2 (Cont...)

(&

S

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Problem #2 (Cont...)

O

cracking...

\ Copyright © William C. Cheng J/

Problem #2 (Cont...)

&

\ Copyright © William C. Cheng

2 months later...
K¢ s cracked!

C
Ke

CSCI 530, Spring 2010 '\

7 CSCI 530, Spring 2010 '\

Problem #2 (Cont...)

o=

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Problem #2 (Cont...)

X
{KC,S}KC
{KC,S}KS

\ Copyright © William C. Cheng J/

CSCI 530, Spring 2010 '\

Problem #2 (Cont...)

= even if the attacker has not cracked K

X
{KC,S}KC
{KC,S}KS

S
Ks

c.s» Simply replaying

the credentials can obtained more ciphertext {data}K cs 1O

help it crack K ¢

\ Copyright © William C. Cheng

RED)

7 CSCI 530, Spring 2010 '\

Solution #2

ﬁ> Add nonces to ticket, credentials
= request looks like {c, s, n}
= {K¢s, S, NfKcand {K¢ g, ¢, nN}Kg

ﬁ> Client can now check that reply made in response to current

request
A
Ka

VAN X
{KC,S’ }KC
{Kc,s’ NIK ¢

D
K¢ 110

\ Copyright © William C. Cheng J/

CSCI 530, Spring 2010 -\
Problem #3

User now trusts credentials

But can server trust user?

How can server tell this isn’t a 3rd-party replay?

Legitimate user makes electronic payment to attacker;
attacker replays message to get paid multiple times

= attacker can spoof IP address and impersonate the client
= requires no knowledge of session key

VRVEVEY

\ Copyright © William C. Cheng

Solution #3

ﬁ> Add challenge-response

= server generates second random nonce
= sends to client, encrypted in session key
= client must decrypt, decrement, encrypt

CSCI 530, Spring 2010 '\

Q if the attacker does not know the session key, it cannot

respond

ﬁ> Effective, but adds second round of messages

\ Copyright © William C. Cheng

7 CSCI 530, Spring 2010 '\

Problem #4

ﬁ> What happens if attacker does get session key?
= can reuse old sessions key to answer challenge-response,
generate new requests, etc.

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Solution #4

ﬁ> Replace (or supplement) nonce in request/reply with
timestamp [Denning, Sacco]
= {K¢s, S, N K o and {K¢ g, C, N, t}K g, respectively
= also send {t'}K . as authenticator, each time the client
sends a message to the server with the current time t’
Q prevents replay without employing second round of
messages as in challenge-response

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Problem #5

ﬁ> Each client to KDC request yeilds new known-plaintext pair
= Or In this case, verifiable plaintext pair
Q either because the format of data is known or because
message conforms to protocol structure

ﬁ> Attacker can sit on the network, harvest client request and
KDC replies

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Solution #5

ﬁ> Introduce Ticket Granting Server (TGS)
= (dalily ticket plus session keys
= session keys are random numbers

) TGS+AS =KDC
= this is modified Needham-Schroeder
= basis for Kerberos

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Problem #6

ﬁ> Active attacker can obtain arbitrary numbers of
known-plaintext pairs
= can then mount dictionary attack at leisure
= exacerbated by bad password selection

ﬁ> K. Is often weak since it's usually derived from a passphrase

\ Copyright © William C. Cheng

CSCI 530, Spring 2010 '\

Solution #6
ﬁ> Must reduce the exposure of the long-term client key K c

ﬁ> Preauthentication
= establish weak authentication for user before KDC replies
= EX:
Q password-encrypted timestamp
Q hardware authentication
Q single-use key
= now the attacker must wait for the client to communicate
with the KDC in order to obtain known-plaintext pairs

\ Copyright © William C. Cheng

\ Copyright © William C. Cheng

TGS

TGS

Kres

CSCI 530, Spring 2010 '\

(s)
i

TGS

TGS (Cont...)

C
Ke

TGS

Kres

= K¢ t1gs has a short lifetime (say 8-10 hours)
= {K¢1estKtas Is known as the ticket-granting-ticket (TGT)

\ Copyright © William C. Cheng

CSCI 530, Spring 2010 '\

S
Ks

SGIIiIl1'CL

TGS (Cont...)

ON
{KeTesiKe
{Kc1esHKTes

TGS l

e

TGS

Kres

= use the TGT to get a ticket for the server s

\ Copyright © William C. Cheng

CSCI 530, Spring 2010 '\

7 CSCI 530, Spring 2010 '\

TGS (Cont...)

TGS
\ - Ktgs

\ {Kc1esiKe S, { ¢ 1es

TGS l

e o

= TGS issues ticket for talking to the server s
= K¢ also has a short lifetime

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

TGS (Cont...)

TGS
\ - Kres
{KC,TGS}KC S, {t}K c, TGS
{Kc TGS}KTef{KCTGS}KTGS/
TGS {Kc S}KC TGS

L
KS

\ Copyright © William C. Cheng J/

CSCI 530, Spring 2010 '\

TGS (Cont...)

\ . TGS
Ktgs
{KC,TGS}KC S, {t}K c, TGS

TGS {Kcs}KcIGS

\\\\\\
i:ig::>4(////{Kcs}Ks S

{data}K ¢ s, {KcsiKs [Ks

= K. Isonly used once for talking to the AS (single sign-on)

Q may be twice if preauthentication is used
Q no need to talk to AS if ¢ needs to talk to another server

Q for every server ¢ would like to talk to, this would be

done only a small number of times per day o -||-0J

\ Copyright © William C. Cheng

[rm—1

0 00 [

\ Copyright © William C. Cheng

ﬁ> Summary of techniques
be explicit about who you wish to talk to (name in request,

check name in reply)
use nonce (check nonce value in reply)
use timestamp

use a separate authentication server (minimize use of K ()

use preauthentication (to make sure no one else can
generate the original request)

ﬁ> It's all about knowing who has the keys

ﬁ> We will revisit Kerberos when we discuss authentication

CSCI 530, Spring 2010 '\

Key Distribution Linked to Authentication

Public Key Distribution

Bill Cheng
http://merlot.usc.edu/cs530-s10

42
\ Copyright © William C. Cheng J/

CSCI 530, Spring 2010 '\

Public Key Distribution

ﬁ> Public key can be public!
= how does either side know who and what the key is for?

private agreement? (not scalable)
Q who are you?
Q how do | know this public key belongs to amazon.com?

G> Does this solve the key distribution problem?
= No - while confidentiality is not required, Integrity is

ﬁ> Must delegate trust
= why?
= how?
= trust VeriSign? trust IE, Netscape? who else are you
trusting that you are not aware of? how many levels of
delegation?

Lt ™0

J

\ Copyright © William C. Cheng

CSCI 530, Spring 2010 '\

Certification Infrastructures

ﬁ> Public keys represented by certificates

ﬁ> Certificates signed by other certificates
= user delegates trust to trusted certificates
= certificate chains transfer trust up several links

RootCA

Do you trust

a certificate
signed by amazon? i w
aa \ L ' ")
\ Copyright © William C. Cheng

CSCI 530, Spring 2010 '\

What Does A Public Key Certificate Look Like?

ﬁ> Example from OpenSSL.:
= include CA. pl in your path
set pat h=(~csci 551b/ openssl/ssl/ m sc $pat h)
export PATH=~csci 551b/ openssl/ssl/ m sc: $PATH
= CA. pl -newca
Q creates:
denoCA/ pri vat e/ cakey. pem CA private key
denoCA/ cacert. pem CA certificate (self-signed)
= CA. pl -new eq- nodes
Q creates:
new eq. pem certificate request
newkey. pem private key
= CA. pl -signreq
Q creates a certificate : newcert. pem

copy of thisisin denoCA/ newcerts . 1 -||-0J

f

\ Copyright © William C. Cheng

CSCI 530, Spring 2010 '\

-
Other Approaches
_) PGP
= "Web of Trust" (no CA)
= can model as connected BT Q\\’}O BCN
D J s

digraph of signers
= Signature has attributes (e.g.,
strength)

) X.500 « A

= hierarchical model: tree (or DAG?)

= but X.509 certificates use ASN.1 v B
= X.509 uses MD5
Q in 2005, Lenstra and B. de Weger 7 C

showed one can create a forged
X.509 certificate

\ Copyright © William C. Cheng

7 CSCI 530, Spring 2010 '\

What Is ASN.1?

ﬁ> Abstract Syntax Notation number One (ASN.1) is a standard
that defines a formalism for the specification of abstract data
types (standardized first in 1984, way before XML)
= the notation provides a certain number of pre-defined basic
types such as:
Q integers (INTEGER)
Q booleans (BOOLEAN)
Q character strings (IA5String, UniversalString...)
Q bit strings (BIT STRING)
= and makes it possible to define constructed types such as:
Q structures (SEQUENCE)
Q lists (SEQUENCE OF)
Q choice between types (CHOICE)
= |ots of tools
Q http://asnl.elibel.tm.fr/ . 1|0

\ Copyright © William C. Cheng

ASN.1
ﬁ> What does ANS.1 grammer looks like?

II\B/b((jEJUI e-order DEFI NI TI ONS AUTOVATI C TAGS :: =

Order ::= SEg.JENCE
header r - header,
I tens SEQUENCE OF Order-1ine}
Order-line ::= SEQUENCE {
I tgrrir code I tem code,
a
uantit antity,
grlce y %nts Y
Itemcode ::= NunericString (SIZE (7))
Label ::= PrintableString (SIZE (1..30))
Quantity ::= CHOCE { unites | NTEGER,
mlllmatres | NTEGER,
| 1 grammes | NTEGER }
Cents ::= | NTEGER
END

\ Copyright © William C. Cheng

CSCI 530, Spring 2010 '\

CSCI 530, Spring 2010 '\

Other Approaches (Cont...)
) SSH

= user keys - out of band exchange
Q ssh-keygen -b 1024 -t rsa
Q install ~/.ssh/id _rsa.pubin ~/.ssh/authorized keys

Q ssh -i ~/.ssh/id rsa ACCONT@HOST

= week assurance of server keys
Q was the same host you spoke with last time

ﬁ> SET (Secured Electronic Transaction) has banks as CA'’s

and common SET root @
= private key of the SET

root CA is split and (M) @mex) (visA) (Discover

spread among child CA'’s

Q hierarchical @ @ ces
Q multiple roots -
Q key splitting 49""0J

\ Copyright © William C. Cheng

