
 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
1

CS530
Key Management &

Distribution

Bill Cheng

http://merlot.usc.edu/cs530-s10

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
2

Using Cryptography

must establish shared key

one side generates key

Provides foundation for security services

But can it bootstrap itself?

transmits key to other side
but how?

straightforward plan

touched upon one form of key exchange

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
3

Two Problems
Peer-to-peer key sharing

Prob 1: Known peer, insecure channel

Prob 2: Secure channel, unknown peer

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
4

Man in the Middle of DH

you don’t really know you have a secure channel

published public values

DH provides key exchange, but no authentication

man-in-the-middle
you exchange a key with eavesdropper (man-in-the-middle),
who exchanges key with the person you think are you
talking to directly
eavesdropper relays all messages, but observes or
changes them in transit
solutions

authenticated DH (signed or encrypt DH value)
encrypt the DH exchange
subsequently send has of DH value, with secret

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
5

Security Through Obscurity?

very simple permutation
Caesar ciphers

only 25 different cases
relies strictly on no one knowing the method
key exchange is really method exchange

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
6

Passwords
Reduces permutation space to key space

But key is more compact and perhaps more readily
exchanged out of band

Caesar cipher: one-letter "key"
10-letter key for MSC reduces 26! (~4x10 20) to 26P10

8-byte key for DES reduces 2 64! (~1010200

) to 256 (~1017)

in person
by telephone (especially for public keys)

Most security depends on some out of band bootstrap
exceptions? are they really exceptions?

DH provided key exchange, but not authentication

but hard to remember 10-letter key

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
7

The German Enigma Machine

not as easily as widely regarded
Broken first by Polish, then by English

day keys plus scramblers (using subkeys)
Weaknesses in key distribution

"session keys" encrypted in duplicate
Enigma did not use OFB/CFB

Rotor-based A
B
C
D
E

A
B
C
D
E

plaintext

ciphertext

rotors are wired
codewheels
a rotor implements
a fixed mono-alphabetic substitution
polyalphabetic substitution (with a long period) - the
encipherment of each plaintext character causes various
rotors to move, like an odometer (but not exactly)

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
8

Secret Key Distribution

Bill Cheng

http://merlot.usc.edu/cs530-s10

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
9

Peer-to-Peer Distribution

hundreds of servers...

Technically easy

But it doesn’t scale

times thousands of users...
yields ~ million keys

building up to the Needham-Schroeder approach
Centralized key server

by hand!
or have a day key

{Kc,s}Kc is the credentials (contains session key)

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
10

Needham and Schroeder - Basic Idea

encrypted twice, each with a different key

User sends request to KDC: {s}

KDC generates a random key: K c,s

No keys ever traverse the net in the clear

{Kc,s}Kc, {Kc,s}Ks

{Kc,s}Ks is the ticket
ticket is opaque to the client, it is meant to be forwarded
with application request

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
11

KDC

KDC

c s
Kc Ks

 s

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
12

KDC (Cont...)

KDC

c s

{Kc,s}Kc

{Kc,s}Ks

Kc Ks

 s

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
13

KDC (Cont...)

KDC

c s

{Kc,s}Kc

{Kc,s}Ks

Kc Ks

 s

{Kc,s}Ks

{data}K c,s

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
14

Problem #1

can now read all of user’s messages intended for server

How does user know session key is encrypted for the server?
And vice versa?

Attacker intercepts initial request, and substitutes own name
for server

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
15

Problem #1 (Cont...)

KDC

c s
Kc Ks

 s

A
Ka

 a

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
16

Problem #1 (Cont...)

KDC

c s

{Kc,a}Kc

{Kc,a}Ka

Kc Ks

 s

A
Ka

 a

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
17

Problem #1 (Cont...)

KDC

c s

{Kc,a}Kc

{Kc,a}Ka

Kc Ks

 s

{Kc,a}Ka

{data}K c,a

A
Ka

 a

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
18

Solution #1

request looks like {c, s}
Add names to ticket, credentials

Both sides can verify intended target for key sharing

This is basic Needham-Schroeder

{Kc,s , s}K c and {K c,s , c}K s, respectively

KDC

c

{Kc,a, a}Kc

{Kc,a, c}K a

Kc

 c, s

A
Ka

 a

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
19

Problem #2

can now read all traffic between user and server

How can user and server know that session key is fresh?

Attacker intercepts and records old KDC reply, then inserts
this in response to future requests

KDC

c

{Kc,s}Kc

{Kc,s}Ks

Kc

A

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
20

Problem #2 (Cont...)

s
Ks

 s

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
21

Problem #2 (Cont...)

KDC

c
Kc

A

s
Ks

cracking...

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
22

Problem #2 (Cont...)

KDC

c
Kc

A

s
Ks

2 months later...
Kc,s cracked!

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
23

Problem #2 (Cont...)

KDC

c

{Kc,s}Kc

{Kc,s}Ks

Kc

s
Ks

 s

A

{Kc,s}Kc

{Kc,s}Ks

 s

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
24

Problem #2 (Cont...)

KDC

c s
Kc Ks

{Kc,s}Ks

{data}K c,s

A

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
25

Problem #2 (Cont...)

{Kc,s}Kc

{Kc,s}Ks

 s

KDC

c s
Kc Ks

{Kc,s}Ks

{data}K c,s

A

even if the attacker has not cracked K c,s , simply replaying
the credentials can obtained more ciphertext {data}K c,s to
help it crack K c,s

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
26

Solution #2

request looks like {c, s, n}
Add nonces to ticket, credentials

{Kc,s , s, n}K c and {K c,s , c, n}K s

Client can now check that reply made in response to current
request

KDC

c

{Kc,s , n’ }Kc

{Kc,s , n’}K s

Kc

 s, n

A
Ka

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
27

Problem #3

attacker can spoof IP address and impersonate the client

User now trusts credentials

But can server trust user?

How can server tell this isn’t a 3rd-party replay?

Legitimate user makes electronic payment to attacker;
attacker replays message to get paid multiple times

requires no knowledge of session key

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
28

Solution #3

server generates second random nonce
Add challenge-response

sends to client, encrypted in session key
client must decrypt, decrement, encrypt

Effective, but adds second round of messages

if the attacker does not know the session key, it cannot
respond

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
29

Problem #4

can reuse old sessions key to answer challenge-response,
generate new requests, etc.

What happens if attacker does get session key?

{Kc,s , s, n, t}K c and {K c,s , c, n, t}K s, respectively

prevents replay without employing second round of
messages as in challenge-response

Replace (or supplement) nonce in request/reply with
timestamp [Denning, Sacco]

also send {t’}K c,s as authenticator, each time the client
sends a message to the server with the current time t’

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
30

Solution #4

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
31

Problem #5
Each client to KDC request yeilds new known-plaintext pair

Attacker can sit on the network, harvest client request and
KDC replies

or in this case, verifiable plaintext pair
either because the format of data is known or because
message conforms to protocol structure

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
32

Solution #5

daily ticket plus session keys
Introduce Ticket Granting Server (TGS)

this is modified Needham-Schroeder
TGS+AS = KDC

basis for Kerberos

session keys are random numbers

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
33

Problem #6
Active attacker can obtain arbitrary numbers of
known-plaintext pairs

can then mount dictionary attack at leisure
exacerbated by bad password selection

Kc is often weak since it’s usually derived from a passphrase

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
34

Solution #6
Must reduce the exposure of the long-term client key K c

establish weak authentication for user before KDC replies

password-encrypted timestamp

Preauthentication

Ex:

hardware authentication
single-use key

now the attacker must wait for the client to communicate
with the KDC in order to obtain known-plaintext pairs

TGSAS

 TGS

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
35

TGS

s
Ks

c
Kc

KTGS

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
36

TGS (Cont...)

TGSAS

 TGS

Kc,TGS has a short lifetime (say 8-10 hours)

c
Kc

s
Ks

{Kc,TGS}Kc

{Kc,TGS}KTGS

{Kc,TGS}KTGS is known as the ticket-granting-ticket (TGT)

KTGS

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
37

TGS (Cont...)

TGS

{Kc,TGS}Kc

{Kc,TGS}KTGS

AS

 TGS

use the TGT to get a ticket for the server s

c
Kc

s
Ks

 s, {t}K c,TGS

{Kc,TGS}KTGS

KTGS

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
38

TGS (Cont...)

TGS

{Kc,TGS}Kc

{Kc,TGS}KTGS

AS

 TGS

TGS issues ticket for talking to the server s

c
Kc

s
Ks

 s, {t}K c,TGS

{Kc,TGS}KTGS

KTGS

{Kc,s}Kc,TGS

{Kc,s}Ks

Kc,s also has a short lifetime

{data}K c,s , {Kc,s}Ks

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
39

TGS (Cont...)

TGS

{Kc,TGS}Kc

{Kc,TGS}KTGS

AS

 TGS

c
Kc

s
Ks

 s, {t}K c,TGS

{Kc,TGS}KTGS

KTGS

{Kc,s}Kc,TGS

{Kc,s}Ks

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
40

TGS (Cont...)

{data}K c,s , {Kc,s}Ks

TGS

{Kc,TGS}Kc

{Kc,TGS}KTGS

AS

 TGS

Kc is only used once for talking to the AS (single sign-on)

c
Kc

s
Ks

 s, {t}K c,TGS

{Kc,TGS}KTGS

KTGS

{Kc,s}Kc,TGS

{Kc,s}Ks

may be twice if preauthentication is used

for every server c would like to talk to, this would be
done only a small number of times per day

no need to talk to AS if c needs to talk to another server

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
41

Key Distribution Linked to Authentication

It’s all about knowing who has the keys

We will revisit Kerberos when we discuss authentication

be explicit about who you wish to talk to (name in request,
check name in reply)

Summary of techniques

use nonce (check nonce value in reply)
use timestamp
use a separate authentication server (minimize use of K c)
use preauthentication (to make sure no one else can
generate the original request)

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
42

Public Key Distribution

Bill Cheng

http://merlot.usc.edu/cs530-s10

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
43

Public Key Distribution

how does either side know who and what the key is for?
private agreement? (not scalable)

Public key can be public!

why?
Must delegate trust

how?

who are you?
how do I know this public key belongs to amazon.com?

trust VeriSign? trust IE, Netscape? who else are you
trusting that you are not aware of? how many levels of
delegation?

no - while confidentiality is not required, integrity is
Does this solve the key distribution problem?

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
44

Certification Infrastructures

user delegates trust to trusted certificates

Public keys represented by certificates

Certificates signed by other certificates

certificate chains transfer trust up several links

Do you trust
a certificate

signed by amazon?

xyz

amazon

RootCA

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
45

What Does A Public Key Certificate Look Like?
Example from OpenSSL:

CA.pl -newca

CA.pl -newreq-nodes

CA.pl -signreq

creates a certificate : newcert.pem
 copy of this is in demoCA/newcerts

include CA.pl in your path
set path=(~csci551b/openssl/ssl/misc $path)

export PATH=~csci551b/openssl/ssl/misc:$PATH

creates:
 newreq.pem: certificate request
 newkey.pem: private key

creates:
 demoCA/private/cakey.pem: CA private key
 demoCA/cacert.pem: CA certificate (self-signed)

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
46

Other Approaches

"Web of Trust" (no CA)
PGP

can model as connected
digraph of signers

hierarchical model: tree (or DAG?)
X.500

but X.509 certificates use ASN.1

A

B

C

X

Y

Z

signature has attributes (e.g.,
strength)

BCNBT

BC

in 2005, Lenstra and B. de Weger
showed one can create a forged
X.509 certificate

X.509 uses MD5

the notation provides a certain number of pre-defined basic
types such as:

integers (INTEGER)

Abstract Syntax Notation number One (ASN.1) is a standard
that defines a formalism for the specification of abstract data
types (standardized first in 1984, way before XML)

booleans (BOOLEAN)
character strings (IA5String, UniversalString...)
bit strings (BIT STRING)

and makes it possible to define constructed types such as:
structures (SEQUENCE)
lists (SEQUENCE OF)
choice between types (CHOICE)

lots of tools
http://asn1.elibel.tm.fr/

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
47

What Is ASN.1?

What does ANS.1 grammer looks like?

Module-order DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

Order ::= SEQUENCE {
 header Order-header,
 items SEQUENCE OF Order-line}
...
Order-line ::= SEQUENCE {
 item-code Item-code,
 label Label,
 quantity Quantity,
 price Cents }

Item-code ::= NumericString (SIZE (7))

Label ::= PrintableString (SIZE (1..30))

Quantity ::= CHOICE { unites INTEGER,
 millimetres INTEGER,
 milligrammes INTEGER }

Cents ::= INTEGER
...
END

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
48

ASN.1

 CSCI 530, Spring 2010

 Copyright © William C. Cheng

T
49

Other Approaches (Cont...)

user keys - out of band exchange
SSH

SET

MC AmEx VISA Discover

BankX Bank1 Bank2

ssh-keygen -b 1024 -t rsa

install ~/.ssh/id_rsa.pub in ~/.ssh/authorized_keys

was the same host you spoke with last time
week assurance of server keys

private key of the SET
root CA is split and
spread among child CA’s

SET (Secured Electronic Transaction) has banks as CA’s
and common SET root

hierarchical
multiple roots
key splitting

ssh -i ~/.ssh/id_rsa ACCONT@HOST

