CS530
Authentication

Bill Cheng

http://merlot.usc.edu/cs530-s10

\ Copyright © William C. Chen

1m0

J

7 CSCI 530, Spring 2010 '\

|dentification vs. Authentication

ﬁ> Identification
= associating an identity (or a claimed identity) with an
iIndividual, process, or request

G> Authentication
= Vverifying a claimed identity

ﬁ> Ex: user ID is identification, password is authentication

\ Copyright © William C. Cheng J/

CSCI 530, Spring 2010 '\

Basis for Authentication

ﬁ> Ideally

= Who you are

) Practically
= something you know

Q e.g., password
= something you have
Q e.g., smartcard, magnetic stripe card, passport, driver’'s
license
= something about you
Q e.g., face, hand, voice, fingerprint (i.e., biometrics)
Q sometimes mistakenly called things you are

ﬁ> Note: policy determines how and what to do

\ Copyright © William C. Cheng

7 CSCI 530, Spring 2010 '\

Something You Know
ﬁ> Password

ﬁ> Algorithm
= e.d., encryption key derived from password

ﬁ> Issues
 —}

someone else may learn it
Q find it, sniff it, trick you into providing it
Ex: e-mail from eBay or Paypal asking you to validate
your password
= other party must know how to check
Q keep in table
once this table is obtained, the attacker may use it
to login to other systems
= you must remember it (tend to use same password)
= how stored and checked by verifier , 1|0

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Examples of Password Systems

ﬁ> Verifier knows password
= can one crack password one letter at a time (as often seen
In movies)?
Q timing attacks (look at power consumptions, time
between successive guesses)

ﬁ> Encrypted Password

= Qonhe way encryption

= EX: UNIX
Q login namd, UID, GID, encrypted password all stores in

/etc/passwd

Q old systems make /etc/passwd globally readable
Q new systems move encrypted passwords to /etc/shadow
Q salt the password (12-bit salt) to protect against

pre-computed dictionary attack -
EDL)

\ Copyright © William C. Cheng

7 CSCI 530, Spring 2010 '\

Examples of Password Systems (Cont...)

ﬁ> Third Party Validation
= EX: Liberty Alliance
Microsoft Passport
Kerberos
Public key systems with Directory Services

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Attacks on Password
ﬁ> Brute force

ﬁ> Dictionary
i} Pre-computed Dictionary

ﬁ> Guessing

= Wwhat's your pet’s name? (favorite city, birth place, ...)

) Finding elsewhere
= Sitting iIn Windows’ Registry
= sitting on USB harddrive

\ Copyright © William C. Cheng J/

CSCI 530, Spring 2010 '\

Something You Have

ﬁ> Cards

= mag stripe (= password?)
= smart card, USB key
Q something your device knows!
Q verifier knows that the device is present!
= time varying password
Q secure ID card
Q challenge/response card
Q smartcard requires special reader, this does not
the user is the device!
limited data length to reduce human mistakes

ﬁ> Issues

= how to validate
= how to read (i.e. infrastructure) -
1m0

\ Copyright © William C. Cheng

CSCI 530, Spring 2010 '\

Something About You

ﬁ> Biometrics

= measures some physical attribute

Q iris scan (can’t really scan the retina)

fingerprint
picture
hand scan (geometry of hand)
voice
Q keystroke patterns?

ﬁ> Issues

= how to prevent spoofing
Q suited when biometric device is trusted/secure, not
suited otherwise
= fingerprint reading device at home, is that a good idea?
Q must be connected to a tamper-proof device

© O 0O O

1m0

J

\ Copyright © William C. Cheng

7 CSCI 530, Spring 2010 '\

Other Forms of Authentication

ﬁ> IP address, MAC address
= e.g., NFS, DHCP

ﬁ} Caller ID (or call back)
= also works with e-mail

i} Past transaction information
= e.g., what's the amount of your last bill?

\ Copyright © William C. Cheng J/

CSCI 530, Spring 2010 '\

"Enrollment” (for Something You Know)

ﬁ> How to initially exchange the secret
= in-person enrollment
= information known in advance
Q e.g., what's the amount of your last bill?
= third party verification
Q e.g., a notary public
= mail or email verification
Q e.g., activation code in e-mail, click here to activate

\ Copyright © William C. Cheng

CSCI 530, Spring 2010 '\

Multi-factor Authentication

ﬁ> Require at least two of the three classes above
= e.g. Smart card plus PIN
= e.g. credit card plus zip code of billing address
= e.(g. biometric and password

ﬁ> Issues

= Dbetter than one factor
= pe careful about how the second factor is validated
E.g., on card, or on remote system
Q PIN goes to remote system (or goes through smartcard
and then remote system)

\ Copyright © William C. Cheng

7 CSCI 530, Spring 2010 =N
General Problems with Password
ﬁ> Space from which passwords are chosen

ﬁ> Too many passwords
= and what it leads to
= solution is "single sign on"?

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 =N
Single Sign On
ﬁ> "Users should log in once and have access to everything"

ﬁ> Many systems store password lists
= which are easily stolen

ﬁ> Better is encryption based credentials
= usable with multiple verifiers
= interoperability is complicating factor

) Liberty Alliance
= communicating information about authentication using a
markup language (Security Association Markup Language)

) Microsoft Passport
= original version based on cookies and hotmail passwords
= next version based on Kerberos (cross realm

authentication)
14 ﬂ

\ Copyright © William C. Cheng

7 CSCI 530, Spring 2010 '\

Encryption Based Authentication

ﬁ> Proving knowledge of encryption key
= nonce = non repeating value

o s

Kee {Nonce/timestamp}K g Kes

\ Copyright © William C. Cheng J/

f

ﬁ> Kerberos

=

/ {KesIKe
{KC,S}KS
(N

Ke

C
) {dataiK ce, {K os {KeoJKe

\ Copyright © William C. Cheng

CSCI 530, Spring 2010 '\

Authentication with Conventional Cryptography

7 CSCI 530, Spring 2010 '\

Authentication with Conventional Cryptography

ﬁ> Kerberos or Needham-Schroeder
= includes challenge/response
= optional pre-authenticator in original message

KDC
/ Kres
s, {t}K ¢ /

/ {KC,S}KC
{KC,S}KS
=

K, \/4 =\ [k

\ Copyright © William C. Cheng J/

CSCI 530, Spring 2010 '\

Kerberos

ﬁ> Third-party authentication service
= distributes session keys for authentication, confidentiality,

and integrity
Q KDC & TGS is usually combined
Q KDC can generate cross realm TGT (pre-arranged)

.
TGS
\ - Ktgs

KeresiKe — {K ¢ 165 /)
TGS\ l {K c,s}Kc,TGS
m/{Kc,s}Ks <
Ke \/ {data}K C,S: {KC,S}KS Ks ' w
T
- Copyright © William C. Cheng 18 Y

7 CSCI 530, Spring 2010 '\

Authentication with Public Key Cryptography

ﬁ> Based on public key certificates
= DS = Directory Server
Q client can include public key certificate in the first
message
Q contact DS mainly to check to see if the public key
certificate has ben revoked and to obtain other

certificates

— C - |
KS”V J DS[{Nonce/timeStamp}K SeS’{Kses}Kg b] Kgrlv

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Public Key Cryptography Summary

ﬁ> Key distribution
= confidentiality not needed for public key
= solvesn * problem

ﬁ> Performance
= slower than conventional cryptography
= implementations use for key distribution, then use
conventional crypto for data encryption

ﬁ> Trusted third party still needed
= to issue public key certificates
= to obtain other public key certificates
= {0 manage revocation
= |n some cases, third party may be off-line

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Certificate-Based Authentication Summary

ﬁ> Certification authorities issue signed certificates

= banks, companies, & organizations like Verisign act as
CA’s
certificates bind a public key to the name of a user
public key of CA certified by higher-level CA’s
root CA public keys configured in browsers & other
software
= certificates provide key distribution

[

[

[

ﬁ> Authentication steps
= verifier provides nonce, or a timestamp is used instead
= principal selects session key and sends it to verifier with
nonce, encrypted with principal’s private key and verifier's
public key, and possibly with principal’s certificate
= verifier checks signature on nonce, and validates

certificate (1m0

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Authentication with Hash Chains

ﬁ> Based on the one-wayness of cryptographic hash functions
= generate secret s, send h(s) to server
= to prove identity, present s to server
= but now s is exposed

\ Copyright © William C. Cheng J/

Authentication with Hash Chains (Cont...)

ﬁ> Use Lamport’s hash (or hash chain)
= h'P%6s) « h?2(s) « hs) ... — h (s)eh(s)ﬁs
= client generate s (seed) and N and compute h (s)
Q sends N and h |\'(s) to server
Q seed can be derived from a passphrase
server keeps a state, start with [N=100, h I\'(s)]

CSCI 530, Spring 2010 '\

= client sends name to server and server responds with N
. N-1

Q clientcomputesandsends x=h " (s)

Q server computes h(x) and compare with current state

Q if succeed, new state is [N-1, x]
= an attacker who has the server’s state cannot login
= this is one of the one-time password schemes

L1 m0

\ Copyright © William C. Cheng

CSCI 530, Spring 2010 '\

Authentication with Hash Chains (Cont...)

ﬁ> Man-in-the-middle small N attack
= man-in-the-middle attack intercepts N from server and

forward N-10 to client
= client sends h I\"11(3) which the attacker will intercept

Q use this to compute h I\"1(5)
= attacker can login 10 times without knowing S

ﬁ> Mitigating the small N attack
= the client needs to remember the last N received from this

server

\ Copyright © William C. Cheng

CSCI 530, Spring 2010 '\

Authentication with Hash Chains (Cont...)

ﬁ> Other weakness in Lamport’s hash
= short lifetime of key
Q when N reaches 1, must generate new seed
Q can use a salt so that the seed can stay the same
& client generate s (seed) and t (salt) and N and
compute h I\'(s+t)
& sends Nand tand h I\'(s+t) to server
& client can discard the salt
& on client login, server responds with N and t
= problem with multiple servers
Q need different seeds
Q 3rd party authentication may not be desirable
Q salt also helps with loging to multiple servers with the
same seed or passphrase

<& use a different salt per server .
p s (01 0.

\ Copyright © William C. Cheng

7 CSCI 530, Spring 2010 '\

Trust Models for Certification

ﬁ> X.509 hierarchical
= OSI model:

Q X.400 - e-mail
Q X.500 - naming (DNS equivalent)

& X.509 - authentication standard
single root (original plan) - UN is the root CA
multi-root (better accepted)
SET (Secured Electronic Transaction) has banks as CA’s
and common SET root
Q private key of @

the SET root CA

Is split and @ @ @ @
spread among

child CA’s BankD) Bank2) ***
111 w0

\ Copyright © William C. Cheng J/

[

[

[

7 CSCI 530, Spring 2010 '\

Trust Models for Certification (Cont...)

_) PGP Model
= "Friends and Family approach" - S. Kent
Q put more trust on more paranoid people
as a result, look like a hierarchy!

ﬁ> Other representations for certifications
= X.509 (popular)

i} No certificates at all
= out of band key distribution
= SSH
Q ~/.ssh/authorized_keys

\ Copyright © William C. Cheng J/

CSCI 530, Spring 2010 '\

Global Authentication Service
ﬁ> From DEC

ﬁ> Pair-wise trust in hierarchy
= name is derived from path followed
= shortcuts allowed, but changes name @ identity
= exposure of path is important for security

ﬁ> Compared to Kerberos
= transited field in Kerberos - doesn’'t change name

ﬁ> Compared with X.509
= X.509 has single path from root
= X.509 is for public key systems

ﬁ> Compared with PGP
—= PGP evaluates path at end, but may have name

conflicts .
L1 m0

\ Copyright © William C. Cheng

CSCI 530, Spring 2010 '\

Generic Security Services APl (GSS-API)

ﬁ> Standard interface for choosing among authentication
methods
= once an application uses GSS-API, it can be changed to
use a different authentication method easily
Q difficulty lies in the fact that different methods of
authentication use different models of interaction
& e.g., one way vs. challenge/response (requires, at a
minimum, 2 messages), with zero knowledge proof,
can have hundreds of messages
= API calls
Q acquire and release credentials
Q manage security context
& init, accept (on server side), and process tokens
Q wrap (confidentiality and/or integrity) and unwrap

11| w0

J

\ Copyright © William C. Cheng

