C$S530

Authorization - Policy

Bill Cheng

http://merlot.usc.edu/cs530-s10

\ Copyright © William C. Chen

1m0

J

CSCI 530, Spring 2010 '\

Authorization

ﬁ> Final goal of system security
= determine whether to allow an operation

Q authentication
Q audit - so that you can change policy to keep the bad

guys out

G> Depends upon
= policy - rules followed by the system

= possibly authentication
Q policy can be based on identity
= other characteristics - e.g., time of day, network threat

condition, system load

\ Copyright © William C. Cheng

7 CSCI 530, Spring 2010 '\

The Role of Policy in Security Architecture

Policy - defines what is allowed and how the system and

security mechanisms should act
(misconfiguration - policy does not reflect intent)

Enforced By

Mechanism - provides protection
interprets/evaluates policy
(firewalls, ID, access control, confidentiality, integrity)

Implemented As

Software - which must be implemented correctly and
according to sound software engineering principles

\ Copyright © William C. Cheng J/

CSCI 530, Spring 2010 '\

Policy: Review - The Access Matrix

ﬁ> Policy represented by an Access Matrix
= also called Access Control Matrix
= One row per object
= one column per subject/principle
= tabulates permissions
= put implemented by:
Q capability list (like a key ring)
Q Access Control List (ACL)
& recall that it's harder to determine who has access

with ACL

\ Copyright © William C. Cheng

7 CSCI 530, Spring 2010 '\

Policy models: Bell-LaPadula

ﬁ> Discretionary policy
— pased on Access Matrix - owner of an object can determine

who has access

G> Mandatory policy
= owner of an object does not get to decide who has access

= Top Secret, Secret, Confidential, Unclassified
= *property: Scanwrite Oifandonly if LevelS < Level O
Q write UP, read DOWN
& it’'s possible that | can create a file that | cannot read
= Create categories so that some members in a class cannot
see some documents
= this approach tries to minimize the speed of secret leaks

i} (more models in Bishop’s book, e.g., integrity policy)
1) ™0

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Role Based Access Control

ﬁ> In a way, similar to groups in UNIX, but more general
= In UNIX, an object can belong to only a single group,
Inconvenient to create dynamic groups

ﬁ> Three phases
= administration
= session management
= access checking

ﬁ> Typical policies
= object policies fairly static
= user’'s roles can change
Q but no need to list all objects to which users has access

ﬁ> Maps to typical organizational policies
= can implement separation of roles

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Security is More Than Mix of Point Solutions

ﬁ> Today’s security tools work with no coordinated policy
= firewalls and Virtual Private Networks
= authentication and Public Key Infrastructure
= Intrusion detection and limited response

ﬁ> We need better coordination
= intrusion response affected at firewalls, VPN’s and
applications
= not just who can access what, but policy says what kind
of encryption to use, when to notify ID systems

ﬁ> Tools should implement coordinated policies
= policies originate from multiple sources
= policies should adapt to dynamic threat conditions
= policies should adapt to dynamic policy changes triggered

o th k
by activities like September 11 response , 1 -||-0J

\ Copyright © William C. Cheng

CSCI 530, Spring 2010 '\

Policies Originate from Multiple Sources

ﬁ> Discretionary policies associated with objects
= read from existing applications or extended ACLs
Q e.g., one module for reading .ssh files and one module
for reading .htaccess files

ﬁ> Local system policies merged with object policies
= proadening or narrowing allowed access - can ignore

discretionary policy
Q e.g., deny all web accesses from certain domains

i} Policies imported from policy/state issuers
= example of policy issuers is virus checker from Network

Associates or Symantec
= example of state issuers is HIPAA - healthcare related

policy for healthcare providers

= (cont...)) 1|0

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Policies Originate from Multiple Sources (Cont...)

ﬁ> Policies imported from policy/state issuers (cont...)
= |D system issues state credentials
= these credentials may embed policy as well

G> Policies embedded in credentials
= these policies attach to user/process credentials and
apply to access by only specific processes
Q e.g., extra audit required from outsiders
= this also allows chaining

i} Policies evaluated remotely
= credential issuers (e.g. authentication and authorization
servers) evaluate policies to decide which
credentials to issue.

1m0

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Policies Origins Summary

ﬁ> HIPAA, other legislation
= e.g., access to student records

_) Privacy statements
= need to know how it is actually enforced

) Discretionary policies
ﬁ> Mandatory policies (e.g. classification)

ﬁ> Business policies

\ Copyright © William C. Cheng

CSCI 530, Spring 2010 '\

GAA-API: Integration through Authorization
ﬁ> GAA: Generic Authorization and Access-control

ﬁ> Focus integration efforts on authorization and the
management of policies used in the authorization decision
= not really new - this is a reference monitor (as in TOPS-20
and MULTICS)
= applications shouldn’t care about authentication or identity
Q separate policy from mechanism
authorization may be easier to integrate with applications
hide the calls to individual security services
Q e.g., key management, authentication, encryption, audit
= can perform adaptive audit
Q dynamic policy
Q when ID detects something, start collecting additional
information or start requiring authentication -
RELL,

even for internal users ')
\ Copyright © William C. Cheng

[

[

7 CSCI 530, Spring 2010 '\

GAA-API

ﬁ> Sometimes it is not possible to plug in security at low level
= need information at the application level
Q Ex: SSL is in the lower layer, it cannot deal with user
certificates

ﬁ> GAA-API: application just asks if something is allowed
= return value is either yes, no, or maybe
Q maybe means you need additional things, e.g., network
source address must come from a certain domain (this
information, again, may not be available at lower layers)

ﬁ> Subject/principle is represented by a Security Context (SC)
= why not an identify?
Q because sometimes it’s not necessary, e.g., to access
this, pay $5 (no authentication)

LDt w0

\ Copyright © William C. Cheng J/

CSCI 530, Spring 2010 '\

GAA-API (Cont...)

ﬁ> EACL (extended ACL)
= the language used by GAA
= extended to include information such as:
Q time of day
Q network threat condition
Q system load

\ Copyright © William C. Cheng

CSCI 530, Spring 2010 '\

Authorization and Integrated Security Services

f

Intrusion Integration of dynamic security
Detection -

services creates feedback path
enabling effective response to
attacks

POLICY

1

Web Servers

-

Databases

Authentication

\ Copyright © William C. Cheng

7 CSCI 530, Spring 2010 '\

Generic Authorization and Access-control API
(GAA-API)

i} Allows applications to use the security infrastructure to

Implement security policies

= gaa_get _object _policy info() function called before
other GAA-API routines which require a handle to object
EACL to identify EACLs on which to operate
Q can interpret existing policy databases

= gaa_check_aut hori zati on() function tells application
whether requested operation is authorized, or if additional
application specific checks are required

GAA-API
SC,obj_id,op

input
- gaa_get
Application obj ect”_eacl ()
~ output AN
<110

yes,no,maybe
\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Three Phases of Condition Evaluation

GAA-API

gaa_get _obj ect_policy_info()

gaa_check_aut hori zati on() »T/F/U

gaa_execution_control () » T/F/U

a.isi.edu, connect, Tom]—»
gaa_post _execution_actions() » T/F/U

- J

i

System State

= 3 calls can be combined (callbacks)
= other example: payment system

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Communicating threat conditions

ﬁ> Threat conditions and new policies carried in signed
certificates
= added info in authentication credentials
= threat condition credential signed by ID system
= |t is often done to run System High - always assumes that
thread condition is RED, only change if received signed
certificate to say that it's no longer RED

G> Base conditions require presentation or availability of
credential
= matching the condition brings in additional policy elements

LDt w0

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Integrating Security Services

ﬁ> The API calls must be made by applications
= this is a major undertaking, but one which must be done
no matter how one chooses to do authorization.

G> These calls are at the control points in the applications
= they occur at auditable events, and this is where records
should be generated for ID systems
= they occur at the places where one needs to consider
dynamic network threat conditions
= adaptive policies use such information from ID systems
= they occur at the right point for billable events

\ Copyright © William C. Cheng

7 CSCI 530, Spring 2010 '\

Advances Needed in Policy

ﬁ> Ability to merge & apply policies from many sources
= |egislated policies
= Qrganizational policies
= agreed upon constraints

ﬁ> Integration of policy evaluation with applications
= S0 that policies can be uniformly enforced

i} Support for adaptive policies is critical
= allows response to attack or suspicion

G> Policies must manage use of security services
= what to encrypt, when to sign, what to audit
= hide these details from the application developer

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

GAA - Applications and Other Integration
ﬁ> Web servers - apache
G> Grid services - globus
i} Network control - IPsec and firewalls
ﬁ> Remote login applications - ssh

ﬁ> Trust management
= can call BYU code to negotiate credentials
= Will eventually guide the negotiation steps

\ Copyright © William C. Cheng J/

CSCI 530, Spring 2010 '\

What Dynamic Policies Enable

ﬁ> Dynamic policy evaluation enables response to attacks:

= |ockdown system (or bump up security) if attack is detected

= Stablish quarantines by changing policy to establish
isolated virtual networks dynamically

= allow increased access between coalition members as new
coalitions are formed or membership changes to respond
to unexpected events
Q e.g., homeland security
Q e.g., open things up - sharing is allowed only when

certain credentials have been received

\ Copyright © William C. Cheng

7~ CSCI 530, Spring 2010 '\

Demo Scenario - LockDown

= You have an isolated local E
area network with mixed
access to web services (some
clients authenticated, some not)

k Copyright © William C. Cheng

7~ CSCI 530, Spring 2010 '\

Demo Scenario - LockDown (Cont...)

= You have an isolated local E
area network with mixed
access to web services (some
clients authenticated, some not)
= You need to allow incoming

authenticated SSH or IPSec
connections

k Copyright © William C. Cheng

7 CSCI 530, Spring 2010 '\

Demo Scenario - LockDown (Cont...)

= You have an isolated local g
area network with mixed
access to web services (some
clients authenticated, some not)

= You need to allow incoming
authenticated SSH or IPSec
connections

= When such connections are
active, you want to lock down
your servers and require
stronger authentication and
confidentiality protection on
all accesses within the network

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Demo Scenario - LockDown (Cont...)

ﬁ> But how do you know if someone is connecting from the
outside?
= you need integrated solutions

ﬁ> The scenatrio is like having a visitor in a classfied area
= Security can be inconvenient

\ Copyright © William C. Cheng J/

Proxies

CSCI 530, Spring 2010 '\

ﬁ> A proxy allows a second principal to operate with the rights

and privileges of the principal that issued the proxy
= existing authentication credentials
= too much privilege and too easily propagated

ﬁ> Restricted proxies

= by placing conditions on the use of proxies, they form the

basis of a flexible authorization mechanism

\ Copyright © William C. Cheng

Restricted Proxies

PROXY CERTIFICATE Proxy
Proxy

Ex: use between 9AM and 5P
Grantee is user X, Netmask is
128.9.x.x, must be able to read
this fine print, can you... G

i} Two kinds of proxies
= proxy key needed to exercise bearer proxy
Q a bearer proxy can be used by anyone
= restrictions limit use of a delegate proxy

G> Restrictions limit authorized operations
= individual objects
= additional conditions
Q when, where, how
Q additional audit records may be produced

CSCI 530, Spring 2010 '\

\ Copyright © William C. Cheng

7 CSCI 530, Spring 2010 '\

Proxies Example

ﬁ> Ex: | want to print to this printer

= printer only accepts authorization from authorization
server
talk to authorization server
authorization server says "maybe" with condition in
credential
since you are a visitor, you must pay
authorization server generates proxy, includes policy,
returns to user as capability

[

[

[

[

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Mechanisms Summary

ﬁ> Access Matrix ﬁ> Web server
= Access Control List (ACL) = .htaccess
= Capability list (key ring)

ﬁ> Unix file system
= bpasically ACL
= at login, look up which groups you belong, associate that
list with your login process (this is like capability)
= when you open a file, the file descriptor is like capability(?)

i} SSH authorized key files
ﬁ} Restricted proxies, extended certificates
ﬁ> Group membership
Payment -
~ L1 m0

\ Copyright © William C. Cheng J/

7 CSCI 530, Spring 2010 '\

Summary

ﬁ> Policies naturally originate in multiple places
= future systems need to deal with this

ﬁ} Deployment of secure systems requires coordination of
policy across countermeasures

i} Effective response requires support for dynamic policy
evaluation

G> Such policies can coordinated the collection of data used as
input for subsequent attack analysis

\ Copyright © William C. Cheng

