

Authorization

Final goal of system security

determine whether to allow an operation

- o authentication
- audit so that you can change policy to keep the bad guys out

Depends upon

- policy rules followed by the system
- possibly *authentication*
 - policy can be based on identity
- other characteristics e.g., time of day, network threat condition, system load

The Role of Policy in Security Architecture

Policy - defines what is allowed and how the system and security mechanisms should act

(misconfiguration - policy does not reflect intent)

Enforced By

Mechanism - provides protection

interprets/evaluates policy

(firewalls, ID, access control, confidentiality, integrity)

Implemented As

Software - which must be implemented correctly and according to sound software engineering principles

Policy: Review - The Access Matrix

- Policy represented by an Access Matrix
 - also called Access Control Matrix
 - one row per object
 - one column per subject/principle
 - tabulates permissions
 - but implemented by:
 - capability list (like a key ring)
 - Access Control List (ACL)
 - recall that it's harder to determine who has access with ACL

Role Based Access Control

In a way, similar to groups in UNIX, but more general

- in UNIX, an object can belong to only a single group, inconvenient to create dynamic groups
- Three phases
 - administration
 - session management
 - access checking
- Typical policies
 - object policies fairly static
 - 🛥 user's roles can change
 - but no need to list all objects to which users has access

• Maps to typical organizational policies

can implement separation of roles

Security is More Than Mix of Point Solutions

- Today's security tools work with no coordinated policy
 - firewalls and Virtual Private Networks
 - authentication and Public Key Infrastructure
 - intrusion detection and limited response
 - We need better coordination
 - intrusion response affected at firewalls, VPN's and applications
 - not just who can access what, but policy says what kind of encryption to use, when to notify ID systems
 - > Tools should implement coordinated policies
 - policies originate from multiple sources
 - policies should adapt to dynamic threat conditions
 - policies should adapt to dynamic policy changes triggered by activities like September 11th response

Policies Originate from Multiple Sources

Discretionary policies associated with objects

- read from existing applications or extended ACLs
 - e.g., one module for reading .ssh files and one module for reading .htaccess files

Local system policies merged with object policies

- broadening or narrowing allowed access can ignore discretionary policy
 - e.g., deny all web accesses from certain domains
- Policies imported from policy/state issuers
 - example of policy issuers is virus checker from Network Associates or Symantec
 - example of state issuers is HIPAA healthcare related policy for healthcare providers
 - **–** (cont...)

Policies Originate from Multiple Sources (Cont...)

- Policies imported from policy/state issuers (cont...)
 - ID system issues state credentials
 - these credentials may embed policy as well
- Policies embedded in credentials
 - these policies attach to user/process credentials and apply to access by only specific processes
 - e.g., extra audit required from outsiders
 - this also allows chaining
 - Policies evaluated remotely
 - credential issuers (e.g. authentication and authorization servers) evaluate policies to decide which credentials to issue.

Policies Origins Summary

- HIPAA, other legislation
 - e.g., access to student records
- > Privacy statements
 - need to know how it is actually enforced
- Discretionary policies
- Mandatory policies (e.g. classification)
- Business policies

11

GAA-API: Integration through Authorization

- GAA: Generic Authorization and Access-control
- Focus integration efforts on authorization and the management of policies used in the authorization decision
 - not really new this is a reference monitor (as in TOPS-20 and MULTICS)
 - applications shouldn't care about authentication or identity
 - separate policy from mechanism
 - authorization may be easier to integrate with applications
 - hide the calls to individual security services
 - e.g., key management, authentication, encryption, audit
 - an perform adaptive audit
 - dynamic policy
 - when ID detects something, start collecting additional information or start requiring authentication

even for internal users

GAA-API

Sometimes it is not possible to plug in security at low level

- need information at the application level
 - Ex: SSL is in the lower layer, it cannot deal with user certificates
- GAA-API: application just asks if something is allowed
- return value is either yes, no, or maybe
 - maybe means you need additional things, e.g., network source address must come from a certain domain (this information, again, may not be available at lower layers)
- Subject/principle is represented by a Security Context (SC)
 - why not an identify?
 - because sometimes it's not necessary, e.g., to access this, pay \$5 (no authentication)

GAA-API (Cont...)

EACL (extended ACL)

- the language used by GAA

extended to include information such as:

• time of day

o network threat condition

system load

Generic Authorization and Access-control API (GAA-API)

- Allows applications to use the security infrastructure to implement security policies
 - gaa_get_object_policy_info() function called before other GAA-API routines which require a handle to object EACL to identify EACLs on which to operate
 - can interpret existing policy databases
 - gaa_check_authorization() function tells application whether requested operation is authorized, or if additional application specific checks are required

Communicating threat conditions

- Threat conditions and new policies carried in signed certificates
 - added info in authentication credentials
 - threat condition credential signed by ID system
 - it is often done to run System High always assumes that thread condition is RED, only change if received signed certificate to say that it's no longer RED
 - Base conditions require presentation or availability of credential
 - matching the condition brings in additional policy elements

Integrating Security Services

- The API calls must be made by applications
 - this is a major undertaking, but one which must be done no matter how one chooses to do authorization.
- > These calls are at the control points in the applications
 - they occur at auditable events, and this is where records should be generated for ID systems
 - they occur at the places where one needs to consider dynamic network threat conditions
 - adaptive policies use such information from ID systems
 - they occur at the right point for billable events

Advances Needed in Policy

- Ability to merge & apply policies from many sources
 - legislated policies
 - organizational policies
 - agreed upon constraints
- Integration of policy evaluation with applications
 - so that policies can be uniformly enforced
- > Support for adaptive policies is critical
 - allows response to attack or suspicion
- Policies must manage use of security services
 - what to encrypt, when to sign, what to audit
 - hide these details from the application developer

GAA - Applications and Other Integration

- > Web servers apache
- Grid services globus
- Network control IPsec and firewalls
- Remote login applications ssh
- Trust management
 - an call BYU code to negotiate credentials
 - will eventually guide the negotiation steps

What Dynamic Policies Enable

- Dynamic policy evaluation enables response to attacks:
 - Iockdown system (or bump up security) if attack is detected
 - stablish quarantines by changing policy to establish isolated virtual networks dynamically
 - allow increased access between coalition members as new coalitions are formed or membership changes to respond to unexpected events
 - e.g., homeland security
 - e.g., open things up sharing is allowed only when certain credentials have been received

23

Demo Scenario - LockDown (Cont...)

- You have an isolated local area network with mixed access to web services (some clients authenticated, some not)
- You need to allow incoming authenticated SSH or IPSec connections

Demo Scenario - LockDown (Cont...)

- You have an isolated local area network with mixed access to web services (some clients authenticated, some not)
- You need to allow incoming authenticated SSH or IPSec connections
- When such connections are active, you want to lock down your servers and require stronger authentication and confidentiality protection on all accesses within the network

Demo Scenario - LockDown (Cont...)

- But how do you know if someone is connecting from the outside?
 - you need integrated solutions
- > The scenario is like having a visitor in a classfied area
 - security can be inconvenient

Proxies

- A proxy allows a second principal to operate with the rights and privileges of the principal that issued the proxy
 - existing authentication credentials
 - too much privilege and too easily propagated

Restricted proxies

by placing conditions on the use of proxies, they form the basis of a flexible authorization mechanism

Proxies Example

Ex: I want to print to this printer

- printer only accepts authorization from authorization server
- talk to authorization server
- authorization server says "maybe" with condition in credential
- since you are a visitor, you must pay
- authorization server generates proxy, includes policy, returns to user as capability

Summary

- > Policies naturally originate in multiple places
 - future systems need to deal with this
- Deployment of secure systems requires coordination of policy across countermeasures
- Effective response requires support for dynamic policy evaluation
- Such policies can coordinated the collection of data used as input for subsequent attack analysis

