Intrusion Detection

Security enforcement mechanisms are not foolproof, so we need a way of knowing when they are not working or even better, before they stop working.

We need ways to detect insider misuse:
- detect suspicious activities
 - e.g., is this employee selling information?

We need ways to detect insider misuse:
- detect suspicious activities
 - e.g., is this employee selling information?

Taxonomy for Intrusion Detection

- What is detected
 - misuse detection - look for "bad" behaviors
 - e.g., virus checker, spam filters - need to download new "definition files"
 - anomaly detection - look at behavior and detect out of profile activities
 - need to compare against a baseline

- Where detected
 - network based
 - host based - system logs
 - application based

- When attack is detected
 - real time
 - after the fact / post mortem

Basis for Detecting Attack

- Systems operating normally
 - activity conforms to statistically predictable patterns
 - actions do not include attempts to subvert policy
 - actions of processes conform to the policies regarding what they are allowed to do
 - e.g., when system is under attack, will see unusual amount of denied accesses

Rating ID Systems

- False positives
 - normal activity flagged as intrusion
 - affects administrator workload
 - e.g., port scanners - if you don't have the vulnerability, do not raise alarm
 - e.g., spam filtering
 - I filter out all HTML-only e-mails
 - too many of these - denial of service on yourself
 - "the boy who cried wolf"

- False negatives
 - attacks that are not detected

Anomaly Detection

- How it works
 - analyze baseline characteristics of system or user behavior and record
 - need to have an abstraction or a model
 - compare current characteristics and behavior against baseline and determine if it's within tolerance
 - or is it just a statistical fluctuation
 - flag differences

- Why it is hard
 - deciding how to characterize behavior so that changes reflect intrusions and not normal changes in activities

- Credit card companies do this all the time
Metrics

- Threshold metrics
 - number of failed access attempts
 - e.g., confiscate ATM card after 3 bad PINs
 - bandwidth consumed
 - e.g., can be used to detect misuses from within
- State change probabilities (Markov models)
 - requires training by analyzing normal traces (system logs)
 - there are systems that can be trained while monitoring
 - looking for transitions that don’t seem to follow the normal pattern

Misuse Detection

- Whether activities or code is violate site policy
 - rule based
 - e.g., if A is followed by B and if B is followed by C, flag it
 - signature based

- Problems
 - can only detect attacks known in advance
 - virus checkers are usually signature based
 - can protect against write to boot sector
 - many more false negatives (subject to definition)
 - vendor’s definition?

- Strengths
 - tend to have fewer false positives

Collecting Input Data

- Audit vs. Intrusion Detection
- Network based ID
- Host based ID
- Application based ID

Network Based ID

- Often based on network sniffing
 - listening to network traffic as it goes by a sensor node
 - could be placed in routers or other network components
 - e.g., SNORT - packet sniffer

- Issues
 - placement
 - be careful with switched Ethernet
 - wireless channel can be asymmetric
 - load
 - may log only summary information to reduce load
 - e.g., IP traceback
 - encrypted traffic (such as IPSec)
 - (cont...)

Network Based ID (Cont...)

- Issues (cont...)
 - determining intent
 - e.g., if a message to port 24 (SMTP) does not look like e-mail, flag it
 - e.g., in HTTP, turn on encryption (but don’t really encrypt) - ID will ignore these messages! can use this “feature” for tunneling

Host Based ID

- We have better understanding of these
 - because hosts are usually not an open system (unlike networks)
 - but break-ins can be covered up easier (unlike networks)

- Scan system and application logs
- Report on system state
 - e.g., load, who are logged in
- Report activity to ID system

- Issues
 - only get what applications already put into logs
 - might not understand the intent of an action
Application Based ID

- **Application determines what to report to ID system**
 - based on a policy

- **Drawbacks**
 - requires application involvement (some applications will not report)
 - authorization functions like GAA-API can help address this limitation

- **Benefits**
 - application understands the objects and entities to which policies apply

Issues In Intrusion Detection

- **Collecting data on and reporting events**
 - interoperability issues
 - languages, e.g. CIDF

- **Reducing data**
 - to reduce network traffic consumed
 - consider overhead
 - summarize data
 - e.g., 10 of the following messages have been seen
 - finding relationships
 - what have you filtered out that shouldn’t be filtered out?

Components of ID Systems

- **Collectors**
 - gather raw data

- **Director**
 - reduces incoming traffic and finds relationships

- **Notifier**
 - accepts data from director and takes appropriate action

Advanced IDS Models

- **Distributed detection**
 - combining host and network monitoring (HIDS)
 - autonomous agents (Crosbie and Spafford)
 - COSSACK project at USC/ISI - professor Papadopoulos

Intrusion Response

- **Intrusion prevention**
 - it’s a marketing buzzword

- **Intrusion response**
 - how to react when an intrusion is detected (or an attempt of intrusion)

Possible Responses

- **Notify administrator**
- **System or network lockdown**
 - change firewall rules

- **Place attacker in controlled environment**
 - quarantine
 - done with worms - no outgoing traffic from this node
 - use a Honeypot to attract unsuspecting attacker

- **Slow the system for offending processes**
 - commonly used for SMTP servers - if spam is detected, slow down the connection

- **Kill the process**
 - often it is more desirable to suspend the process so you can examine memory
Phase of Response

- Preparation (Bishop 2003)
- Identification
- Containment
- Eradication
- Recovery
- Follow up

Preparation

- Generate baseline for system
 - checksums of binaries
 - for use by systems like tripwire (configuration management software)
 - the checksums should be stored on read-only devices
- Develop procedures to follow
- Maintain backups

Identification

- This is the role of the ID system
 - detect attack
 - characterize attack
 - try to assess motives of attack
 - e.g., making your system a zombie vs. identity theft
 - isolate and observe
 - can use a Honey Pot
 - may have liability issues
 - determine what has been affected
 - be careful with the Electronic Privacy Act
 - do you need a warrant to run a Honey Pot?

Containment

- Passive monitoring
 - to learn intent of attacker
 - learn new attack modes so one can defend against them later
- Constraining access
 - locking down system
 - closing connections (in-bound or out-bound)
 - blocking at firewall, or closer to source (for DDoS attacks)
 - active network (network management application)
- Combination
 - constrain activities, but don’t let attacker know that one is doing so (Honeypots, Jail)

Eradication

- Prevent attack or effects of attack from reoccurring
 - locking down system (also in containment phase)
 - blocking connections at firewall
 - isolate potential targets (inverted quarantine)

Recovery

- Restore system to safe state
 - check all software for backdoors
 - recover data from backup
Follow Up

- Take action against attacker
 - find origin of attack
- Notify other affected parties
 - some of this occurs in earlier phases as well
- Assess what went wrong and correct procedures
 - apply patches
- Find buggy software that was exploited and fix
 - apply patches

Security for USC/ISI

- Academic environment
 - open environment
 - people want to run own servers
 - different for departments vs. students
 - what protection does your environment need?
 - for inexperienced people, put them behind firewall
 - sensitivity of information to be protected
 - student records
 - medical records (medical school, HIPAA requirements)
 - data in student's directories
 - cannot have control over these (unlike for employees)