Automated Detection of Vulnerabilities in Privileged Programs by
Execution Monitoring *

Calvin Ko

George Fink

Karl Levitt

Department of Computer Science
University of California, Davis
Davis, CA 95616
{ko, gfink, levitt}@Qcs.ucdavis.edu

Abstract

We present a method for detecting exploitations of vul-
nerabilities in privileged programs by monitoring their ex-
ecution using audit trials, where the monitoring is with
respect to specifications of the security-relevant behavior
of the programs. Our work is motivated by the intrusion
detection paradigm, but is an attempt to avoid ad hoc ap-
proaches to codifying misuse behavior. Our approach is
based on the observation that although privileged programs
can be exploited (due to errors) to cause security compro-
mise in systems because of the privileges accorded to them,
the intended behavior of privileged programs is, of course,
limited and benign. The key, then is to specify the intended
behavior (i.e., the program policy) and to detect any action
by privileged program that is outside the intended behavior
and that imperils security. We describe a program policy
specification language, which is based on simple predicate
logic and regular expressions. In addition, we present spec-
ifications of privileged programs in Uniz, and a prototype
ezecution monitor for analyzing audit trails with respect to
these specifications. The program policies are surprisingly
concise and clear, and in addition, capable of detecting
exploitations of known vulnerabilities in these programs.
Although our work has been motivated by the known vul-
nerabilities in Uniz, we believe that by tightly restricting
the behavior of all privileged programs, exploitations of un-
known vulnerabilities can be detected. As a check on the
specifications, work is in progress on wverifying them with
respect to an abstract security policy.

*This work is funded in part by the National Security
Agency University Research Program under Contract No.
DOD-MDA904-93-C4083 and by ARPA under Contract No.
USNNO00014-94-1-0065.

TPublished in the 1994 Computer Security Application
Conference

1 Introduction

Computer systems are vulnerable to attacks. De-
spite the best effort to uncover and remove security
errors, vulnerabilities in computer systems still exist,
enabling outside attackers to gain entry to systems
and inside attackers to exploit their privileges [3, 4].

Vulnerabilities in privileged programs (e.g., setuid
root programs in Unix, such as rdist, sendmail, and
fingerd) have been one of the major techniques for at-
tackers to obtain necessary privileges to accomplish
their missions. These programs run with high privi-
leges that allow them to bypass the kernel protection
mechanism, in effect violating the system policy. In
principle, they are designed and trusted not to im-
peril the security of the system, but due to errors,
they can be used to bypass security safeguards [2, 21].
For example, during its testing, a backdoor was in-
advertently inserted into the BSD sendmail program,
enabling users to obtain root privileges. As another
example, the finger daemon program neglects to limit
the size of a input string, enabling an attacker to
overflow its buffer to obtain root access in the host
providing the finger service. [7, 19]. Often, such er-
rors are subtle, and the exploitation involves multiple
processes interacting in unexpected ways. Therefore,
these errors are often not detected during testing and
not discovered until long after system releases.

In this paper, we discuss a technique for detecting
exploitations of vulnerabilities in privileged programs.
Our approach employs specifications of the security-
relevant behavior of privileged programs as an oracle
for comparison with actual program behavior recorded
in system audit trails. Our approach is based on the
observations that although privileged programs have
the potential to do “anything” because they often run
as setuid root, the intended behavior is, of course, lim-
ited and benign. The security-relevant part of the in-

tended behavior of these programs are rather simple
and can be specified in a precise and concise man-
ner, typically in a few lines of predicate logic. Most
exploitations of vulnerabilities in these programs in-
volve “tricking” these programs into violating their in-
tended behavior. We describe a specification language
for the privileged programs (setuid root programs and
daemons) in Unix. Using just the audit trails gener-
ated by the operating system, we can detect actions
of most privileged programs which are in violations
of the specified behavior. In addition, the concise
specifications of the privileged programs and the low-
complexity audit analysis algorithm enable real-time
monitoring of these programs. With the specifications,
we are able to detect known attacks which exploit vul-
nerabilities in these programs. Although the specifica-
tions are written with the knowledge of the vulnerabil-
ities, we strongly believe that unknown vulnerabilities
in privileged programs can also be detected by our
method.

Our approach is a variant of intrusion detection [6],
wherein audit trails are analyzed in real time to de-
tect ongoing attacks. Currently, intrusion detection
employs statistical modeling of normal (user) behav-
ior [6, 22, 17] and rule-based modeling of suspicious
user behavior [10, 18, 16]. For the purpose of intru-
sion detection, user behavior is considered suspicious
if it bears similarity to known attacks or known attack
methods, or is in direct violation of the system policy.
While one can in principle codify the steps to exploit
known vulnerabilities for purpose of inclusion in an in-
trusion detection system, it is much more difficult to
cope with unknown vulnerabilities. Our approach is
essentially a specification-based model of intended be-
havior of privileged programs, which is a more system-
atic way to identify “misuses” of privileged programs,
and is capable of detecting attacks which exploit un-
known vulnerabilities in these programs. Therefore,
we anticipate immediate application of our approach
to intrusion detection systems.

The paper is organized as follow. To motivate our
work, Section 2 presents a few examples of the known
vulnerabilities in privileged programs in Unix. Sec-
tion 3 presents our approach to modeling the behav-
ior of privileged programs. Section 4 discusses the
security specification of privileged programs. Section
5 presents our approach to monitoring the execution
of privileged program using audit trails. Section 6
presents some example program policy specifications.
Section 7 is related work, and Section 8 is our conclu-
sions and recommendations for future work.

2 Examples

This section presents informal descriptions of a few
attacks that exploit vulnerabilities in Unix privileged
programs.

The first program we describe is rdist ! (Remote
File Distribute Program) [20], which is used for main-
taining consistency of files on multiple hosts in a net-
work. The single executable actually contains the
client and the server. rdist is normally invoked by
a user in a master host to distribute copies of files to
remote hosts. To perform an update, rdist (client) in-
vokes rdist (server) in the remote host using the remote
shell protocol. The client and the server communicate
via a simple internal protocol. rdist is a setuid root
program because it uses privileged ports for authen-
tication. To distinguish the client and server, we use
rdist[s] to denote the server.

rdist contains a vulnerability which lets a user (un-
privileged) in the system change the permission mode
of any file [1]. It has been used by attackers to set
the setuid bit of a system shell (e.g., /bin/sh). The
vulnerability relates to the way that rdist[s] updates a
file. To update a file, rdist/s] first creates a temporary
file (Fig. 1a); then, it copies data to the temporary file
(Fig. 1b); when all the data is copied, rdistfs] changes
the ownership and permission mode of the file to cor-
respond to the master file on the remote system (Fig.
1¢) ; finally, it renames the temporary file to the des-
tination file (Fig. 1d).

The way to exploit the vulnerability is as follows: A
normal user invokes rdist with appropriate commands
to update one of his own files in the local host, in
effect causing rdist[s] to update the file. Right after
rdist[s] creates the temporary file and before it finishes
copying data, the user renames the temporary file and
creates a symbolic link (which has the same name as
the temporary) but to the target file the permission of
which he desires to change (Fig. le) 2. When rdist[s]
finishes copying the data, it changes the ownership
and the permission of the temporary file using chown
and chmod. Both of them take a symbolic pathname
as parameters. The tricky point is that chown does
not follow symbolic links, but chmod does. Therefore,
the effect is the ownership of the symbolic link itself is
changed but the insidious part is that the permission

Lrdist was first released as part of 4.3 BSD UNIX, and has
been very widely used by many system administrators to auto-
mate software distribution in a network environment.

2 An attacker can have a better control of the timing and the
final permission mode of the target file if he invokes the rdist
server directly and gives internal commands to the rdist server
to update a file.

time

Figure 1: Visualization of a rdist Attack

mode of ”/bin/sh” is changed (Fig. 1¢’).

The vulnerability we described is very subtle, in-
volving concurrent interactions of processes, the se-
mantics of pathname, and temporary files. One might
expect, then, that the bug might not be discovered
through conventional testing, indeed rdist was released
and used for years before the error was discovered.
However, in this attack, rdist is tricked into doing
something outside the behavior intended for it. Specif-
ically, rdist is used by a user to update his files in a
host; therefore, when invoked by a user, the process
associated with the invocation should update only the
file owned by the user. In addition, rdist only changes
the permissions of the temporary files it creates, not
other files. As we discuss in Section 7, if rdist causes
changes to the security state other than as we de-
scribed, it is being exploited. Audit trail analysis can
uncover such exploitative behavior.

Our second example relates to a flaw in the fin-
ger daemon, which has been exploited to obtain a
root shell in the host running the daemon. Specif-
ically, the finger daemon reads finger requests using
the gets library call, which does not specify a maxi-
mum buffer length 2. To exploit the vulnerability, an
attacker sends a long request message to the finger
daemon that overwrites the read buffer, which is in
the run-time stack structure of the process. He over-
writes the stack with his own code, and the return
address in gets’s stack frame to point the code he in-

3In current C language implementations, the return address
of a function call is saved in the run-time stack.

jectes. When the subroutine returns, it branches into
that buffer and executes the attacker’s code. But, the
intended security-relevant behavior of finger daemon
is very restrictive. It should execute only the finger
program (/usr/ucb/finger), and read only some sta-
tus files (e.g., /etc/utmp, .plan, .profile).

Our third example is Sendmail. This single pro-
gram actually serves different roles. First, it is invoked
directly as a delivery intermediary by the front end
mailer (/usr/ucb/mail). It runs as a daemon process
to accept mail arriving at the mail port, and routes
mail to remote systems. In delivery of mail, it also
executes mail handlers (e.g., “vacation” programs) for
users. In addition, it retries pending mail in the mail
queue periodically. When invoked as mailg, it displays
the contents of the mail queue. Also, it can be invoked
to rebuild the alias database.

There have been quite a few vulnerabilities associ-
ated with different distributions of Sendmail. One of
earlier vulnerabilities was the presence of a backdoor
in the Berkeley version, which was included for test-
ing purpose. The backdoor enables any user connected
to the mail port to obtain a shell running as root by
entering a special command. Recently, another vul-
nerability was discovered which enables a normal user
to cause root to execute a program he specifies, in
effect acquiring root access. Despite the complexity
of Sendmail, its intended security-relevant behavior is
well defined and relatively simple to specify. Sendmail
should manipulate only files inside the mail spool di-
rectory and inside the mail queue directory. In addi-

Uuser processes
o000

OO

privileged programs and system servers

Potential Bad s
behavior Good behavior

Figure 2: The System Model

tion, it may write to some configuration files in the
/etc directory, where the file names are prefixed by
“sendmail”. No other file operations are intended.

3 Modeling the Behavior of Privileged
Programs

Figure 2 depicts a simple model of Unix, which is
also applicable to numerous other operating systems.
The bottom level is the operating system kernel, which
manages all resources (e.g., memory, disks, files, cpu).
Resources can only be accessed through invocations of
system calls. A kernel normally provides some mech-
anisms for mandatory and discretionary protection of
the resource it manages. Thus, actions of user pro-
cesses (top level) are restricted by the kernel to pre-
vent any security violation. However, a system nor-
mally consists of “privileged” processes (middle level),
which are allowed to bypass the kernel’s security mech-
anism in order to accomplish their jobs. They could
be part of the kernel, but reside outside to keep the
already complex kernel from being even bigger, and
also to allow these programs to be portable among
different proprietory kernels. Nevertheless, they are
trusted not to imperil the security of the system. The
term “privileged program” refers to the program a
privileged process executes. In current systems, these
programs exist in two forms: amplification program
and server program. The term “amplification” indi-
cates that the privileges associated with the process
is amplified when it executes an amplification pro-
gram (e.g., setuid program in Unix). A server program
runs in background, listens to request from users, and
serves the requests on behalf of the user. They nor-
mally are invoked at system startup or invoked by a
super server process on requests (e.g., inetd). Such

> Behavior allowed by O.S.

> Actual behavior

'/_ I Specified behavior monitorable with audit trials

[| Al possible behavior

O Expected behavior

Figure 3: A Behavior Model of Privileged Programs

programs are almost always given more power than
they need to accomplish their jobs because of the lim-
itations of the access control mechanisms of the oper-
ating system; that is most operating systems provide
protection at too coarse a granularity to preclude the
need for privileged processes or programs.

Figure 3 illustrates the problems with these privi-
leged programs and our approach to cope with such
problems. The rectangle represents all possible behav-
ior of a privileged program. The largest ellipse repre-
sents the behavior allowed by the kernel. This allow-
able behavior is divided into two portions: “good” be-
havior and “bad” behavior, which illustrates the fact
that a privileged program is given the authority to do
bad things. In principle, the behavior of a privileged
program should not compromise security; that is, its
intended behavior (the shaded circle) lies completely
inside the good behavior portion of the ellipse. How-
ever, the actual behavior of the privileged program
(the shaded ellipse) may deviate from the good be-
havior because of program errors and incorrect setup.
Our solution to the (perhaps) inevitable presence of
such errors is to specify the security-relevant behav-
ior of each privileged program, which is monitorable
using audit trails (dotted lines).

One important aspect of the behavior of a privi-
leged program is its set of allowed accesses. More for-
mally, an access is an order pair (op_type, obj), where
“op-type” is the access right or the operation type
(e.g., read, write, execute, chmod) and “obj” is the
object (e.g., a file, a directory). Although it cannot
guarantee perfect security, we find that by specifying

the set of accesses allowed, the behavior of these priv-
ileged programs can be restricted in a way that the
probability of security compromise is greatly reduced.
As the specification is concerned with the access rights
a program holds, we call the set of allowed accesses a
program policy or just policy.

3.1 The Scope of Privileged Program Ex-
ecution

An execution of a privileged program may not be
confined to only one process. Often, a process run-
ning a privileged program may create another process
to perform part of the job. This situation is very com-
mon in Unix daemon programs, wherein a daemon
forks a child process to handle each request, and then
continues to listen for other incoming requests. From
our prospective, the child process is considered to be
a part of the execution of the privileged program as-
sociated with its parent.

In addition, a privileged program may invoke other
non-privileged programs to accomplish part of the job.
Although the control is passed to the invoked program,
the execution is still considered to be part of the priv-
ileged program execution. One tricky aspect occurs
when a privileged program invokes another privileged
program. For instance, Sendmail invokes /bin/mail,
the backend mailer, to deliver mail to users. There
are two ways to view this situation, equivalent with
respect to assurance of security: (1) the execution of
the new privileged program is consider to be part of
the execution of the original privileged program, (2)
the execution of the original privileged program ends,
followed by the execution of the new privileged pro-
gram. In our model, we consider the execution of the
original privileged program continues to include the
invoked program, regardless the invoked program is
privileged or not.

The execution of a privileged program within a pro-
cess terminates either (1) the process dies, or (2) the
process gives up its privileges permanently. For in-
stance, many privileged programs in Unix provide a
shell escape feature which enables a user to obtain a
shell. Right before it executes the shell and passes the
control to the user, it changes the uid and gid of the
process to that of the user.

3.2 Relation to Users

In existing computer systems, privileged programs
can be invoked directly or indirectly by a user. For in-
stance, in Unix, a user invokes passwd (the password

program) directly to change his password stored in
the password file. On the other hand, consider the
case when a user invokes Ipr to request that a file
be printed; in turn lpr communicates with lpg, which
prints the file. In this case the actions of the Ilpq are
invoked indirectly by the user.

The set of allowed accesses for an execution instance
of a privileged program is a function of the user who
invoked the program. More precisely, we consider a
subject to be the pair (user, privileged_program). The
idea is similar to the integrity policy of Clark and Wil-
son [5] in which high integrity data can only be ac-
cessed by authorized users using a particular program
(Transformation Procedure). The concept of a user or
a process as a subject in an operating system is well
understood. Here, we employ the pair (user, program)
as a subject. The entities which actually perform op-
erations are processes. A process is associated with a
user (denoted by a uid in Unix), who is accountable
for the actions of the process. An operating system
usually restricts the accesses of a process based on its
associated user. But, a process at any time is execut-
ing a program. Therefore, (U, P) is the process which
is owned by the user U and executing the program P.

4 Specification of Program Policies

In this section, we present our approach to the spec-
ification of privileged program policies. We first iden-
tify some properties of privileged programs (i.e., their
policies), and then we present a language for speci-
fying the policies. Briefly, we discuss a method for
reasoning about programs.

4.1 Properties of Privileged Program be-
havior

We present some properties of interest for the priv-
ileged programs to motivate the features we include in
our specification language. The set of objects a priv-
ileged program can access depends on the associated
user. For instance, a user invokes rdist to update his
files in remote hosts. In general, objects accessible to
a program are a function of the user invoking the pro-
gram. Below, we identify some security-relevant prop-
erties of program behavior and present an approach
to specifying them.

e Name Oriented: In an operating system, a pro-
gram running in user space requests system ser-
vices through system calls in which an object

(e.g., a file, a printer) is identified by a sym-
bolic name (e.g., pathname). The set of objects
(e.g., files, ports) that a privileged program can
access with a particular operation is often name
oriented. For instance, some privileged programs
(e.g., Ipr, Ipq in Unix) are permitted to access
files inside a particular directory (e.g., printer
spool directory), where the pathnames for the
files are prefixed by the pathname of the direc-
tory. As another example, the home directory of
a user is often given the same name as the user
(e.g., /usr/home/ko is the home directory of user
ko). We use regular expressions to model the
name space of the objects. Regular expressions
are well-suited to represent a set of strings such as
the set of names for resources. For example, the
regular expression ” /var/spool/(x/)*s” matches
every file inside the directory ” fvar/spool”.

Conditional: Whether an object is accessible often
depends on the attributes of the object, e.g., the
owner, the permission mode. For instance, when
a user invokes lpr to print a file, lpr is able to
read files readable by the user. A readable file is
either owned by the user and owner-readable, in
the same group as the user and group-readable,
or world-readable. To express this kind of rela-
tion, we use a predicate construct similar to that
in Prolog, where an object is a variable, and a
formula is used to bind the value of the variable
(including the value of all its attributes).

Abstract State of the program execution and sys-
tem: In some cases, what a program can do de-
pends on the current state of the program ex-
ecution. For instance, many programs create a
temporary file; therefore, such a program should
be allowed to read, write, and delete the tem-
porary file it created. We represent the relevant
abstract state of program execution in terms of
values bound to state variables. Drawing on our
examples, one variable is the set of files created
by the program. In Unix, other state variables
could be the effective uid and the effective group
id of the process executing the program. An im-
portant consideration for our purpose is that an
abstract state of program execution or of the sys-
tem is meaningful only if it is extractable from
audit trails. Currently, specifying and tracking of
the states are done in an ad hoc manner. But, a
language for defining abstract states and tracking
of them from audit trails is being developed.

4.2 A Program Policy Specification Lan-
guage

The goal of the policy specification language is to
provide a simple way to specify the policies of privi-
leged programs. In addition, the language should be
eagsy to translate to rules that operate on audit trails,
thus permitting an execution of a program revealed
by audit records to be checked against the program’s
specification. Furthermore, the specification should
be sufficiently formal to allow its verification with re-
spect to an overall system policy. We describe the
policy specification language informally and primarily
through examples. A more detail description of the
syntax and semantics of the language is in [14]

Our language is based on predicate logic and reg-
ular expressions. The alphabet of the specification
language is derived from the system to be modeled.
Of particular interest is the set of operations O (e.g.,
read, write, exec) and their parameters. For instance,
in our Unix model, a read operation takes a file as its
only parameter. The set of object types T (e.g., file,
printer, port) and the attributes associated with each
type of objects are also relevant here. (For example,
the attribute of a file can be name, owner uid, permis-
sion mode.) Last, the abstract state variables are also
of interest. The alphabet of the specification language
consists of

e a set of operation predicate symbols OP =
{op, ~ op|op € O}.

o for each type t € T, a set of attribute symbols Ay.

e a set of state variable symbols S.

A program policy of the program myprog takes the
following form:

PROGRAM myprog (U)
ruley
ruley

END

U is a parameter referring to the user associated with
the execution of the program. The body of a program
policy specification is a list of rules that characterize
the set of parameter values allowed for each operation
op € OP. A rule is similar to a predicate definition
in Prolog. For instance read("/etc/passwd") and
read(F) :- F.ouid = U.uid are rules which define
the value of the predicate read. In this example, read

is a predicate corresponding to the operation read,
which takes a file as parameter. A file can be iden-
tified by its pathname. The first rule says that read is
true for the file "/etc/passwd". In the second rule,
the parameter to read is a variable, whose value is
bound by the formula following it ((F.ouid=U.uid)).
Therefore, the second rule indicates that read is true
for any file, where the file owner is the user associated
with the program execution. In this case, ouid, the
owner uid of the file, and uid, the uid of the associ-
ated user are attribute symbols in Ay;e, and in Ayger
respectively.

The set of parameter values allowed for an oper-
ation op is determined by the value of the predicate
op and ~ op. An operation op is allowed for the pa-
rameters py, Pz, ..., Pk, iff op(p1,p2, ..., px) is true and
~ op(p1, P2, ---, Px) is false.

Figure 4 shows an example specification for a sim-
ple system, where the operations are read, write, and
ezxec, all taking a file as parameter. A file is iden-
tified by its name (path). Rule (1) indicates that
the program can access the file, ” /bin/ls”, with the
exec operation. In rule (2), the ”+” operator con-
catenates two strings; hence, the program can write
to the file ” /usr/spool/mail/username’. The ”=~"
symbol in rule (3) is the regular pattern matching
operator. Rule (3) allows the program to execute
any file whose name matches the regular expression
"/bin/ ((sh) | (csh))". In other words, the program
is allowed to execute ” /bin/sh” and ” /bin/csh”. In
rule (4), the special symbol ”*” matches with any ob-
ject of any type, which means that the program is
allowed to read any file. However, rule (5) defines the
read predicate, which specifies that the program is
not allowed to read ” /etc/passwd’. Lastly, rule (6)
consists of a built-in predicate inside, which returns
true if F is inside ” /etc”.

4.2.1 A Specification Language for Unix

We present a specification language for a Unix system,
in which three object types are considered: user, file
and port. Figure 5 provides four tables which sum-
marize the attributes of each type of object, the set of
operations, some relevant state variables, and some of
the built-in predicates and their meanings.

With this specification language, we created spec-
ifications for the Unix setuid programs and network
daemons. In practice, some details of a program pol-
icy may be site dependent. For example, the set of
users, and the directory for storing user mail may dif-
fer among hosts. To be able to have a single set of pro-

set of object types = {user(name, uid),
file(name, ouid, pmode)}

set of operations = {read(file), write(file), exec(file)}

PROGRAM myprogram(U)

exec("/bin/1s"); - (1

write("/usr/spool/mail/" + U.name); - (2)

exec(F) :- F.name =" /bin/[(sh)|(csh)]"; - (3)

read(*); - (4)

“read("/etc/passwd") ; - (5)

write(F) :- inside(F, "/etc"); - (6)
END

Figure 4: An Example Program Policy in a simple
system

gram policies applicable to all sites, one can identify
the places in a generic policy that are site-specific and
replace them with parameters. We provide this fea-
ture using the C macro preprocessor with site-specific
parameters provided by a list of “#define” statements.
To instantiate a policy, one can run the policy and the
symbol definitions through a macro preprocessor.

4.3 Reasoning about the specifications

Our goal is to write specifications for privileged
programs, having each specification reflect the “least
privilege principle” [11] to restrict the access rights of
these programs. There are two important questions
related to our approach. First, how can we determine
intended behavior of a program and write the security
specification? Second, is the specification of the pro-
gram correct? Currently, we specify setuid programs
based on the functionality of the program and some
global security goals (e.g., system integrity, data in-
tegrity, and data confidentiality). The policies of the
setuid programs we have specified are based on the
goal of system data integrity generally related to the
following, among others: passwords, mount tables, se-
curity attributes of users, user table. However, one
would come up with a different set of specifications
for a goal of confidentiality, and a different set for de-
nial of service.

We are developing a Unix security model which
aims at providing a basis for writing security specifica-
tions of the privileged program and formally checking
the correctness of the specifications. Specifically, the
model should permit a determination of whether secu-
rity can be compromised, and of course, the way they
could be compromised, with the assumption that the
privileged program implementations conform to our

| Object type

Attribute |

user name:string | uid:integer gname:string | gid:integer
file name:string | ouid:integer ogid:integer | pmode:integer
port num:integer | priv_port:boolean
Type of Operations
read(file) write(file) | exec(file)
chmod(file, [integer]) | unlink(file) | link(file, [file])
chown(file, [user]) create(file) | bind(port)
State Variable | Explanation
Filecreated Set of files created by the program
Euid Effective uid of the current process
Egid Effective gid of the current process
Name Explanation Meaning
own(U,F) U is the owner of F U.uid = F.ouid
inside(F,D) F is inside directory D F.name = D.name + ”(x/)*%”
worldwritable(F) | F is worldwritable F.pmode & 0002 = 0
create(F) F is created by the current program | F.name = Filecreated

Figure 5: A Specification Language for Unix

specifications. Our model consist of the specification
of the kernel and an abstract state description of the
system. Briefly, the kernel provides a set of opera-
tions (i.e., system calls) for users, and the privileged
programs provide additional operations described by
their specifications. The kernel and all the privileged
programs together are intended to enforce a system
policy. We attempt to define a global policy for a
whole system, such as Unix, and reason about whether
the specifications satisfy this policy.

5 Real-time Security Monitoring

Starting with the security specifications of the priv-
ileged programs, we present our approach to monitor-
ing the execution of these programs through audit trail
analysis. Auditing is the process of logging “interest-
ing” activities. In current systems, auditing is carried
out at the system call interface. Audit trails contain
all system calls invoked, and hence, can be used to
monitor the execution of privileged programs.

We describe a prototype program execution mon-
itor running under the Sun Basic Security Module
(BSM) Unix operating system. Figure 6 depicts the
architecture of the execution monitor. The prepro-
cessor filters the audit trails generated by the audit
daemons, and associates audit records with the sub-

Program Specification
Translator

Audit-trail Jevel Rules

Site-Specific Details

- f?ﬁit Records| || pattern | logical
Preprocessor matcher unit

Execution Monitor

¢

Violations

Figure 6: Architecture of the Execution Monitor

ject identifier (user, program). It generates internal
audit records of the following form:

(uid, progid, op, euid, egid, path, pmode,
ouid, ogid, devid, fileid, port)

uid and progid are the subject identifiers of the

record; op is the operation; euid, egid are the effec-
tive user id and the effective group id of the process;
path, pmode, ouid, ogid, devid, and fileid are the
pathname, permission mode, owner uid, group uid,
device id, and the file id of the file if the operation is
on a file; port is the port number if the operation is
on a port.

The translator is responsible for the automatic
transformation of the program policy to audit-trail
rules, which are logical expressions in terms of the
fields of the internal audit record. Thus, we can match
the operations of the subject with security specifica-
tions.

A practical problem with a Sun BSM audit trail
is that audit records are not associated with a pro-
gram. To associate all the records with the appropri-
ate (user, program) identifier, we keep a table of the
program each process is currently executing. As we
are only interested in privileged programs, we treat
all non-privileged programs as a single program. The
preprocessor keeps track of all the exec and fork calls
and updates the table in the following ways:

e exec: when a user running a non-privileged pro-
gram invokes a setuid root program P, the pro-
gram associated with the new process becomes P.

e fork: when a new process is created, the program
associated with the new process is temporarily
that of its parent, pending its invocation of a dif-
ferent program.

In the case of a server or a daemon, the situa-
tion is more subtle. A server/daemon is usually as-
sociated with a pseudo-user. However, sometimes a
server/daemon may execute a command or run a pro-
gram on behalf of a user. For instance, the cron dae-
mon in Unix is actually a background daemon used to
execute time-dependent jobs on behalf of users. To ex-
ecute a command/program for a user, the server forks
a new process, the new process changes its uid to that
of the user, and then the new process executes the
command or program for the user. Therefore, the pre-
processor also tracks all the setuid/seteuid/setreuid
calls made by server/daemon programs.

There are some limitations associated with audit
trails. First, most auditing systems do not record all
parameters to system calls. For instance, the record
for a write call contains the file written to but not the
data that was written. Still, current BSM audit trails
are sufficient for monitoring a wide range of program
behavior that bears on security. Second, a major ben-
efit of our approach compared with conventional au-

dit analysis in current IDS is that we do not need to
analyze audit records associated with non-privileged
programs. Therefore, only a small number of audit
records is needed to be analyzed.

6 Example Program Policies

In this section, we revisit the programs described in
Section 2 and describe the program policies of these
programs. We discuss how the specifications can be
used to detect exploitations of known vulnerabilities.
Although the vulnerabilities are known, we specified
the program policies solely based on the expected
behavior of these programs. Therefore, we believe
that our method can be effective in catching exploita-
tions of yet-to-be-discovered vulnerabilities in privi-
leged programs.

6.1 Finger Daemon

As mentioned in Section 2, the finger daemon pro-
gram (versions before 11/5/88) has a vulnerability
that enables an attacker to inject his own code and
make the daemon execute the code. The vulnerability
was exploited by the Internet Worm to execute a copy
of the worm in hosts which provide the finger service.
However, the intended behavior of the finger daemon
is actually very restricted and easy to define as below:

PROGRAM fingerd(U)
read(X) :- worldreadable(X);
bind (79) ;
write ("/etc/log");
exec("/usr/ucb/finger");

END

Clearly, the worm attack is detected since fingerd
is only allowed to execute the finger program. In ad-
dition, we believe anything an attacker can do to sub-
vert the program with respect to security will violate
the specification and will be caught by our execution
monitor.

6.2 Rdist

In Section 2, we described informally the exploita-
tion of one of the vulnerabilities of rdist. The follow-
ing is the policy of the rdist program, including the
behavior of both the client and server.

PROGRAM rdist (U)

read(*);
write(F) :- inside("/usr/home" + U.name, F.name);
chmod (F) :- create(F); (a)
chown(F) :- create(F); (b)
bind(P) :- priv_port(P);
END

This specification simply says that although rdist
is setuid root, and has the potential to do anything,
it can write only to files that belong to the user who
invokes it. In addition, rdist should change the own-
ership and the permission mode of the temporary file,
i.e., it is allowed to change the ownership and the per-
mission mode of the file it created (Rules a and b).
This simple property can be checked easily at runtime
using our execution monitor.

6.3 Sendmail

The following is the specficiation of Sendmail. De-
spite the numerous functions of this program (as indi-
cated in Section 2), it still has a concise specification
with respect to security. In general, Sendmail manip-
ulates only files inside the mail spool directory and
inside the mail queue directory. In addition, it may
write to some configuration files in the /etc directory,
where the file names are prefixed by ”sendmail”. One
of the problems with Sendmail is that it can execute a
predefined command for a user when new mail arrives.
A typical example is the vacation program, which is
used to automatically send a reply message. However,
Sendmail is not intended to have the authority to ex-
ecute any arbitrary program for a user. Thus, our
policy defines what Sendmail can do for the superuser
when new mail arrives. With this specification, an
attacker who exploits Sendmail to perform any bad
action (e.g., modifying the password file and system
programs) will be detected.

#define mailboxdir "/usr/spool/mail"

#define mailspooldir "/usr/spool/mqueue"

#define mailport 25

#define root_mail_handler

PROGRAM sendmail (U)
read(X) :- worldreadable(X);
write(X) :- inside(X, mailboxdir);
write(X) :- inside(X, mailspooldir);
write("/etc/sendmail."+"[\.]1*");
bind (mailport) ;
exec("/bin/mail");
exec(root_mail_handler)

END

:= U.uid = 0;

"/home/root/mail_handler"

7 Related Work

Similar approaches to specifying the access capa-
bilities of programs have been proposed by Karger
[12], King [13], and Lai [15]. Karger attempted to
use a table-driven translation mechanism to deduce
the set of files which will be accessed by a program
(e.g., abc.obj, abc.exe for a fortran compiler). The
file access policy is enforced with a name checking
subsystem. Instead of using a file translation scheme,
Lai proposed a data structure called Valid Access List
(VAL) to hold the set of files accessible by an un-
trusted process. He describes how to extend the oper-
ating system kernel to enforce the file access policy. In
[13], King used a regular-expression-based language to
describe the set of objects each operation can access.
Instead of a dynamic technique, static program anal-
ysis is used to check whether a program conforms to
the policy. What distinguishes our work is we are try-
ing to limit the damage caused by errors in privileged
programs, while others are trying to limit the damage
caused by a trojan horse or virus. We are more con-
cerned about a normal user misusing the privileges of
a privileged program, not a privileged program misus-
ing the privileges of a user. In addition, we find that
the behavior of privileged programs are more regular,
so that the policies for these programs can be easily
specified.

Apart from monitoring the execution of privileged
programs, the approach of software testing is proposed
to detect flaws in the implementation of privileged
programs. Property-based testing [8, 9] employs se-
curity specifications (similar to our specifications for
privileged programs) as the basis for automated static
and dynamic testing of privileged programs from their
source code. It uses the technique of slicing, dataflow
coverage metrics, symbolic evaluation, and execution
monitoring.

8 Conclusions and Future Work

In this paper, we discuss a method for detecting
exploitations of vulnerabilities in privileged programs.
Our method uses specifications to describe the in-
tended behavior of privileged programs, and uses au-
dit trails to monitor the actual behavior of the pro-
grams. We identify an important aspect of the be-
havior of privileged programs: the set of accesses. We
describe a program policy specification language for
specifying the security relevant behavior of privileged
programs based on predicate logic and regular expres-

sions. The language is capable of expressing a wide
range of program behaviors. We presented the spec-
ifications of some “problematic” privileged programs
in Unix, showing that previous exploitations of the
vulnerabilities in these programs are indeed inconsis-
tent with our specifications. In addition, the speci-
fications are surprisingly short and concise, and the
computation requirements of the audit trail analysis
is low, making real-time detection possible. Our work
can also be the basis for a misuse detector in an in-
trusion detection system, detecting “misuses” that ex-
ploit vulnerabilities in privileged programs. Concep-
tually, our approach uses detection as a mean to en-
force the “least privilege principle” [11]. We believe it
is the first attempt to detecting attacks by identifying
deterministically the positive behavior of objects (pro-
grams). We find that our approach works well on most
of the privileged program in Unix, except for some au-
thentication programs (e.g., login, rlogin). Although
our approach is not complete, we strongly believe that
by appropriately restricting the behavior of privileged
programs, the chance of security compromise due to
errors in these programs can be greatly reduced.

For future work, we see an immediate application
of our approach to intrusion detection systems (e.g.,
NIDES [16], DIDS [18]). In addition, our basic ap-
proach of detecting “misuses” of objects (in this case:
privileged programs) by specifying the positive behav-
ior should also be applied to other system components
such as DNS, NFS, and routers. Next, to overcome
the limitations of system audit trails, the approach
of application auditing, i.e., in addition to the kernel,
the application program itself generates audit trails is
promising. Briefly, the goal is to find a way to instru-
ment a program automatically to generate audit trails
that provide information needed for monitoring. Ap-
plication auditing depends on the trustworthiness of
the audit trails, which system auditing can, in prin-
ciple, provide. Last, one observation is that although
the size of a privileged program is often very large,
the part of the program which needs privileges is of-
ten small. Therefore, a methodology for writing a pro-
gram in a way that particular properties of the pro-
gram can be guaranteed by trusting only a part of the
source code would be very useful.

References

[1] Private communications with tsutomu shimomura.

[2] B. So B. P. Miller, L. Fredriksen. An empirical study of the
reliability of unix utilities. Communications of the ACM,
33(12), December 1990.

[3] S. M. Bellovin. There be dragons. Proceedings of 1992
USENIX Security Symposium, September 1992.

[4] B. Cheswick. An evening with berferd: In which a cracker
is lured, endured, and studied. Proceedings of the Winter
USENIX Conference, January 1992.

[5] D. Clark and D. Wilson. A comparision of commercial
and military computer secruity policies. Proceedings of
the 1987 IEEE Symposium on Research in Security and
Privacy, April 1987.

[6] D. Denning. An intrusion detection model. Proceedings of
the 1986 IEEE Symposium on Research in Security and
Privacy, pages 118-131, April 1986.

[7] M. W. Eichin and J. A. Rochlis. With microscope and
tweezers: An analysis of the internet virus of novermber
1988. Proceedings of the 1989 IEEE Symposium on Re-
search in Security and Privacy, April 1989.

[8] G. Fink, C. Ko, M. Archer, and K. Levitt. Toward a
property-based testing enviornment with applications to
security critical software. Irvine Software Symposium,
1994.

[9] G. Fink and K. Levitt. Property-based testing for secu-
rity critical software. Proceedings of the 10th Computer
Security Application Conference, 1994.

[10] K. Ilgun. A real-time intrusion detection system for unix.
Proceedings of the 1993 IEEE Symposium on Research in
Security and Privacy, pages 16-28, May 1988.

[11] M. D. Schroeder J. D. Saltzer. The protection of informa-
tion in computer systems. Proceedings of the IEEE, 63(9),
March 1975.

[12] P. A. Karger. Limiting the damage potential of discre-
tionary trojan horse. Proceedings of the 1987 IEEE Sym-
posium on Research in Security and Privacy, April 1987.

[13] M. M. King. Identifying and controlling undersirable pro-
gram behaviors. Proceedings of the 14th National Com-
puter Security Conference, 1992.

[14] C. Ko and K. Levitt. Specifying and monitoring privileged
program behavior. Technical report, University of Califor-
nia, Davis, 1994. (in preparation).

[15] N. Lai and T. E. Gray. Strengthening discretionary ac-
cess controls to inhibit trojan horses and computer viruses.
1988 USENIX Summer Symposium, June 1988.

[16] T.F. Lunt, A. Tamaru, and F. Gilham. A real-time
intrusion-detection expert system (ides). Technical Report
Project 6784, SRI, Menlo Park, Feburary 1992.

[17] S.E. Smaha. Haystack: An intrusion detection system.
Proceedings of the 4th Computer Security Application
Conference, October 1988.

[18] S.R. Snapp and et. al. Dids - motivation, architecture,
and an early prototype. Proceedings of the 1/th National
Computer Security Conference, pages 167-176, October
1991.

[19] E. H. Spafford. The internet worm program: An analysis.
ACM SIGCOM, January 1989.

[20] Sun Microsystem. Man Pages: Rdist - remote file distri-
bution program.

[21] Sun Microsystems. Sun Security Bulletin #122 - 126.
[22] H. S. Vaccaro and G. E. Liepins. Detection of anomalous
computer session activity. Proceedings of the 1989 IEEE

Symposium on Research in Security and Privacy, pages
280-289, May 1989.

