
DDoS Defense by Offense
Michael Walfish∗, Mythili Vutukuru∗, Hari Balakrishnan∗, David Karger∗, and Scott Shenker†
∗MIT, {mwalfish,mythili,hari,karger}@csail.mit.edu †UC Berkeley and ICSI, shenker@icsi.berkeley.edu

ABSTRACT
This paper presents the design, implementation, analysis, and ex-
perimental evaluation of speak-up, a defense against application-
level distributed denial-of-service (DDoS), in which attackers crip-
ple a server by sending legitimate-looking requests that consume
computational resources (e.g., CPU cycles, disk). With speak-up,
a victimized server encourages all clients, resources permitting, to
automatically send higher volumes of traffic. We suppose that at-
tackers are already using most of their upload bandwidth so cannot
react to the encouragement. Good clients, however, have spare up-
load bandwidth and will react to the encouragement with drastically
higher volumes of traffic. The intended outcome of this traffic infla-
tion is that the good clients crowd out the bad ones, thereby captur-
ing a much larger fraction of the server’s resources than before. We
experiment under various conditions and find that speak-up causes
the server to spend resources on a group of clients in rough pro-
portion to their aggregate upload bandwidth. This result makes the
defense viable and effective for a class of real attacks.

Categories and Subject Descriptors: C.2.0 [Computer-
Communication Networks]: Security and protection
General Terms: Design, Experimentation, Security
Keywords: DoS attack, bandwidth, currency

1 INTRODUCTION
Our goal is to defend servers against application-level Distributed
Denial of Service (DDoS), a particularly noxious attack in which
computer criminals mimic legitimate client behavior by send-
ing proper-looking requests via compromised and commandeered
hosts [10, 18, 36, 37]. By exploiting the fact that many Internet
servers have “open clientele” (i.e., they cannot tell a good client
from the request alone), the attacker forces the victim server to
spend much of its resources on spurious requests. For the savvy
attacker, the appeal of this attack over a classic ICMP link flood
is two-fold. First, it requires far less bandwidth: the victim’s com-
putational resources—disks, CPUs, memory, application server li-
censes, etc.—can often be depleted by proper-looking requests long
before its access link is saturated. Second, because the attack traffic
is “in-band”, it is harder to identify and thus more potent. Examples
of such (often extortionist [30,44]) attacks include using bots to at-
tack Web sites by: requesting large files [36, 37], making queries
of search engines [10], and issuing computationally expensive re-
quests (e.g., database queries or transactions) [21].

Current DDoS defenses try to slow down the bad clients. Though
we stand in solidarity with these defenses in the goal of limiting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM ’06, September 11–15, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-308-5/06/0009 . . . $5.00.

the service that attackers get, our approach is different. We rely
on encouragement (a term made precise in §3), whereby the server
causes a client, resources permitting, to automatically send a higher
volume of traffic. Our approach is to encourage all clients to speak
up, rather than sit idly by while attackers drown them out. For if,
as we suppose, bad clients are already using most of their upload
bandwidth, then encouragement will not change their traffic vol-
ume. However, the good clients typically use only a small fraction
of their available bandwidth to send requests, so they will react to
encouragement by drastically increasing their traffic volume. As
good clients send more traffic, the traffic into the server inflates,
but the good clients will be much better represented in the mix and
thereby capture a much larger portion of the server than before.

Of course, this caricature of our approach leaves many mech-
anisms unmentioned and myriad issues unaddressed. The purpose
of this paper is to bring the preceding high-level description to life
with a viable and effective system. To that end, we describe the
design, prototype implementation, and evaluation of speak-up, a
defense against application-level DDoS attacks in which clients are
encouraged to send more traffic to an attacked server.

We put our approach in context with the following taxonomy of
defenses:

Over-provision massively. In theory, one could purchase
enough computational resources to serve attackers and good
clients. However, anecdotal evidence suggests that while sites pro-
vision additional link capacity during attacks [33], even the largest
Web sites try to conserve computation by detecting and denying
access to bots [30, 42] using the methods in the next category.

Detect and block. These approaches try to distinguish between
good and bad clients. Examples are profiling by IP address [5,9,27]
(a box in front of the server or the server itself admits requests ac-
cording to a learned demand profile); rate-limiting alone (a special
case of profiling in which the acceptable request rate is the same for
all clients); CAPTCHA-based defenses [16,21,29,42,47] that pref-
erentially admit humans; and capabilities [4, 50, 51] (the network
allows only traffic that the recipient has authorized). These tech-
niques are powerful because they seek to block or explicitly limit
unauthorized users, but their discriminations can err (see §8.1).
Moreover, they cannot easily handle heterogeneous requests (i.e.,
those that cause the server to do different amounts of work). The
next category addresses these limitations.

Charge all clients in a currency. Here, an attacked server gives
a client service only after it pays in some currency. Examples are
CPU or memory cycles (evidence of payment is the solution to a
computational puzzle) [1, 6, 7, 11, 12, 20, 25, 49] and money [25].
With these defenses, there is no need to discriminate between good
and bad clients, and the server can require a client to pay more
for “hard” requests. However, for the legitimate users to capture
the bulk of the service, they must in aggregate have more of the
currency than the attackers.

In this taxonomy, speak-up is a currency approach with bandwidth
as the currency. We believe that this work is the first to investigate

this idea (though it was proposed in a workshop paper by us [48]
and [17, 39] share the same high-level motivation; see §8.1).

The central mechanism in speak-up is a server front-end, the
thinner, that protects the server from overload and performs encour-
agement (§3). Encouragement can take several forms (§3.2, §3.3).
The one that we implement and evaluate is a virtual auction: when
the server is overloaded, the thinner causes each new client to auto-
matically send a congestion-controlled stream of dummy bytes on
a separate payment channel, and when the server is ready to pro-
cess a request, the thinner selects the client that has sent the most
bytes (§3.3). We show that the ability to “game” this scheme is lim-
ited (§3.4). We also design an extension of the thinner to handle
heterogeneous requests (§5).

As a concrete instantiation of speak-up, we implemented the
thinner as a Web front-end (§6). The thinner performs encourage-
ment by giving JavaScript to unmodified Web clients that makes
them send large HTTP POSTs. These POSTs are the “bandwidth
payment”. We find that this implementation meets our goal of al-
locating the protected server’s resources in rough proportion to
clients’ upload bandwidth (§7). Despite being unoptimized, the im-
plementation sinks 1.5 Gbits/s on a high-end PC.

Practical DDoS mitigation requires multiple techniques, and
speak-up is not intended to stand alone. In §8, we compare speak-
up to other defenses and discuss when it should work with them.

2 APPLICABILITY OF SPEAK-UP
Before describing speak-up’s design, we discuss under what condi-
tions and to what extent speak-up is useful. We start by informally
addressing four commonly asked questions and then characterize
our threat model and speak-up’s range of applicability.

2.1 Four Questions
How much aggregate bandwidth does the legitimate clientele need
for speak-up to be effective? Speak-up helps good clients, no matter
how much bandwidth they have. Speak-up either ensures that the
good clients get all the service they need or increases the service
they get (compared to an attack without speak-up) by the ratio of
their available bandwidth to their current usage, which we expect to
be very high. Moreover, as with many security measures, speak-up
“raises the bar” for attackers: to inflict the same level of service-
denial on a speak-up defended site, a much larger botnet—perhaps
several orders of magnitude larger—will be required. Similarly, the
amount of over-provisioning needed at a site defended by speak-up
is much less than what a non-defended site would need.

Thanks for the sales pitch, but what we meant was: how much ag-
gregate bandwidth does the legitimate clientele need for speak-up
to leave them unharmed by an attack? The answer depends on
the server’s spare capacity (i.e., 1−utilization) when unattacked.
Speak-up’s goal is to allocate resources in proportion to the band-
widths of requesting clients. If this goal is met, then for a server
with spare capacity 50%, the legitimate clients can retain full ser-
vice if they have the same aggregate bandwidth as the attacking
clients (see §3.1). For a server with spare capacity 90%, the legiti-
mate clientele needs only 1/9th of the aggregate bandwidth of the
attacking clients.

We now put these results in the context of today’s botnets by
first noting that most botnets today are less than 100,000 hosts, and
even 10,000 hosts is a large botnet [18, 19]. (Supporting evidence
for these sizes is as follows. One study found that the average bot
has roughly 100 Kbits/s of bandwidth [40]. If each bot uses half
its bandwidth during an attack, then a 10,000-node botnet gener-
ates 500 Mbits/s of traffic, and a 100,000-node botnet generates 5

Gbits/s of traffic. These numbers are above, respectively, the 80th
percentile and 99th percentile of attack sizes observed in [38].) Sec-
ond, assume that the average good client also has 100 Kbits/s of
bandwidth. Then for a service whose spare capacity is 90%, speak-
up can fully defend it (i.e., leave its good clients unharmed) against
a 10,000-host (resp., 100,000-host) botnet if the good clients num-
ber ∼1,000 (resp., ∼10,000).

We believe that these orders of magnitude are not larger than
the clientele of the Web’s largest sites: these numbers refer to the
good clients currently interested in the service, many of which may
be quiescent. For example, consider search engines. Humans paus-
ing between queries count in the “current clientele”, and there are
almost certainly thousands of such users at any time for the large
search engines.

Then couldn’t small Web sites, even if defended by speak-up, still be
harmed? Yes. For botnets of the sizes just mentioned (and for the
small number of even larger ones [18, 19, 43]), speak-up-defended
sites need a large clientele or vast over-provisioning to fully with-
stand attack. However, we think that future botnets will be smaller.

Our rationale is as follows. Today, sites can recognize primitive
bots. Such bots launch attacks too quickly, and sites block them by
profiling IP addresses. To evade these defenses, bots will eventually
become more sophisticated, for example by building up an activity
profile at a given Web site and then flying under the profiling radar
during an attack. At this point, it will be hard for sites to identify
and block the bots. However, ISPs, which can observe their hosts
over long periods of time, will still be able to identify bots. Indeed,
we speculate that once sites no longer have effective defenses, so-
ciety (governments, public and industry pressure, etc.) will force
ISPs to act, thereby reducing the number of bots (but not elim-
inating them—bot identification is not a precise science). When
attackers adapt to having fewer but smarter bots, application-level
attacks—which require smart bots but conserve resources—will be
more common, making speak-up more broadly applicable.

Because bandwidth is in part a communal resource, doesn’t the
encouragement to send more traffic damage the network? We first
observe that speak-up inflates traffic only to servers currently un-
der attack—a very small fraction of all servers—so the increase in
total traffic will be minimal. Moreover, the “core” appears to be
heavily over-provisioned (see, e.g., [15]), so it could absorb such
an increase. Finally, speak-up’s additional traffic is congestion-
controlled and will share fairly with other traffic. We address this
question more fully in §4 and other issues raised by speak-up in §9.

2.2 Threat Model and Applicability Conditions
The preceding informal discussion gave a general picture of speak-
up’s applicability. We now give a more precise description, begin-
ning with the threat model. Speak-up aims to protect a server, de-
fined as any network-accessible service with scarce computational
resources (disks, CPUs, RAM, application licenses, file descriptors,
etc.), from an attacker, defined as an entity (human or organization)
that is trying to deplete those resources with legitimate-looking re-
quests (database queries, HTTP requests, etc.). Such an assault is
called an application-level attack [18].

Each attacker sends traffic from many compromised hosts, and
this traffic obeys all protocols, so the server has no easy way to tell
from a single request that it was issued with ill intent. Most services
handle requests of varying difficulty (e.g., database queries with
very different completion times). While servers may not be able to
determine a request’s difficulty a priori, our threat model presumes
that the attacker can send difficult requests intentionally.

One reason that application-level attacks are challenging to
thwart is that the Internet has no robust notion of host iden-
tity. For datagram protocols without three-way handshakes (e.g.,
DNS-over-UDP), spoofing is trivial, and even for protocols
with three-way handshakes, spoofing is possible. (Such spurious
handshakes—observed before [41] and correlated with spam trans-
missions [34]—work because many ISPs accept spurious BGP
routes and propagate them to other ISPs [14].) Since a determined
attacker can repeatedly request service from a site while pretending
to have different IP addresses, we assume that an abusively heavy
client of a site will not always be identifiable as such.

We are not considering link attacks. We assume that the server’s
access links (and, more generally, the network infrastructure) are
not flooded; see condition C1 below.

There are many types of Internet services, with varying defen-
sive requirements; speak-up is not appropriate for all of them. For
speak-up to defend against the threat modeled above, the following
two conditions must hold:

C1 Adequate link bandwidth. The protected service needs
enough link bandwidth to handle the incoming request stream
(and this stream will be inflated by speak-up). A server can
satisfy this condition via a high-bandwidth access link or co-
location at a data center. However, we expect the more com-
mon deployment to be ISPs—which of course have signifi-
cant bandwidth—offering speak-up as a service (just as they
do with other DDoS defenses today), perhaps amortizing the
expense over many defended sites, as suggested in [2].

C2 Adequate client bandwidth. To be unharmed during an at-
tack, the good clients must have in total roughly the same
order of magnitude (or more) bandwidth than the attacking
clients. As argued in §2.1, this property holds for some sites
today, and we expect it to hold for many more in the future.

Furthermore, speak-up offers advantages over alternate defenses
when all of the following also hold:

C3 No pre-defined clientele. Otherwise, the server can install
filters or use capabilities [4,50,51] to permit only traffic from
known clients.

C4 Non-human clientele. If the clientele is exclusively human,
one may be able to use proof-of-humanity tests (e.g., [16, 21,
29, 31, 42, 47]).

C5 Unequal requests or spoofing or smart bots. If the server
has an unequal request load (as mentioned before), then
our currency-based approach can charge clients for harder
requests—even if the server does not know the request dif-
ficulty a priori (see §5). Also, if attackers spoof rampantly
(as mentioned above), traditional defenses based on identify-
ing and blocking clients are unlikely to keep the bots at bay.
Likewise, those defenses could be confounded by bots smart
enough to fly under the profiling radar (as discussed in §2.1).

The canonical example of a service that meets all of the con-
ditions above (provided its clientele has adequate bandwidth) is
a Web server for which requests are computationally intensive,
perhaps because they involve back-end database transactions or
searches (e.g., sites with search engines, travel sites, and automatic
update services for desktop software). Often, the clientele of these
sites is partially or all non-human. Beyond these server applica-
tions, speak-up could protect the capability allocator in network
architectures such as TVA [51] and SIFF [50] that seek to handle
DoS attacks by issuing capabilities to clients.

3 DESIGN OF SPEAK-UP
Speak-up is motivated by a simple observation about bad clients:
they send requests to victimized servers at much higher rates than
legitimate clients do. (This observation has also been made by
many others, including the authors of profiling and detection meth-
ods.) At the same time, some limiting factor must prevent bad
clients from sending even more requests. We posit that in many
cases this limiting factor is bandwidth. The specific constraint
could be a physical limit (e.g., access link capacity) or a thresh-
old above which the attacker fears detection by profiling tools at
the server or by the human owner of the “botted” host. For now, we
assume that bad clients exhaust all of their available bandwidth on
spurious requests. In contrast, good clients, which spend substan-
tial time quiescent, are likely using a only small portion of their
available bandwidth. The key idea of speak-up is to exploit this dif-
ference, as we now explain with a simple illustration.

Illustration. Imagine a request-response server, where each re-
quest is cheap for clients to issue, is expensive to serve, and con-
sumes the same quantity of server resources. Real-world exam-
ples include single-packet Web requests, DNS front-ends (e.g.,
those used by content distribution networks or infrastructures like
CoDoNS [35]), and AFS servers. Suppose that the server has the
capacity to handle c requests per second and that the aggregate de-
mand from good clients is g requests per second, g < c. Assume
that when the server is overloaded it randomly drops excess re-
quests. If the attackers consume all of their aggregate upload band-
width, B (which for now we express in requests per second) in at-
tacking the server, and if g+B > c, then the good clients will receive
only a fraction g

g+B of the server’s resources. Assuming B � g (if
B ≈ g, then over-provisioning by moderately increasing c would
ensure g + B < c, thereby handling the attack), the bulk of the
server goes to the attacking clients. This situation is depicted in
Figure 1(a).

In this situation, current defenses would try to slow down the bad
clients. But what if, instead, we arranged things so that when the
server is under attack good clients send requests at the same rates
as bad clients? Of course, the server does not know which clients
are good, but the bad clients have already “maxed out” their band-
width (as assumed above). So if the server encouraged all clients
to use up their bandwidth, it could speed up the good ones with-
out telling apart good and bad. Doing so would certainly inflate
the traffic into the server during an attack. But it would also cause
the good clients to be much better represented in the mix of traffic,
giving them much more of the server’s attention and the attackers
much less. If the good clients have total bandwidth G, they would
now capture a fraction G

G+B of the server’s resources, as depicted in
Figure 1(b). Since G � g, this fraction is much larger than before.

We now focus on speak-up’s design, which aims to make the
preceding under-specified illustration practical. In the rest of this
section, we assume that all requests cause equal server work. We
begin with requirements (§3.1) and then develop two ways to re-
alize these requirements (§3.2, §3.3). We also consider various at-
tacks (§3.4). We revisit our assumptions in §4 and describe how
speak-up handles heterogeneous requests in §5.

3.1 Design Goal and Required Mechanisms
Design Goal. In keeping with our view of bandwidth as a cur-
rency, our principal goal is to allocate resources to competing
clients in proportion to their bandwidths:1

1This goal might seem more modest than the chief aim of profiling:
blocking bad clients altogether. However, as discussed in §8.1, given a
smart bot, profiling can only limit, not block, bad clients.

(a) (b)

Figure 1: An attacked server, B + g > c, (a) without speak-up (b) with speak-up. The good clients’ traffic is gray, as is the portion of the server that
they capture. The figure does not specify speak-up’s encouragement mechanism (aggressive retries or payment channel).

If the good clients make g requests per second in aggregate
and have an aggregate bandwidth of G requests per second to
the server, and if the bad clients have an aggregate bandwidth
of B requests per second, then the server should process good
requests at a rate of min(g, G

G+B c) requests per second.

If this goal is met, then modest over-provisioning of the server (rel-
ative to the legitimate demand) can satisfy the good clients. For if it
is met, then satisfying them requires only G

G+B c ≥ g (i.e., the piece
the good clients can get must exceed their demand). This expres-
sion translates to the idealized server provisioning requirement:

c ≥ g(1 + B/G) def
= cid,

which says that the server must be able to handle the “good” de-
mand (g) and diminished demand from the bad clients (B g

G). For
example, if B = G (a special case of condition C2 in §2.2), then the
required over-provisioning is a factor of two (c ≥ 2g). In practice,
speak-up cannot exactly achieve this ideal because limited cheating
is possible. We analyze this effect in §3.4.

Required Mechanisms. Any practical realization of speak-up
needs three mechanisms. The first is a way to limit requests to the
server to c per second. However, rate-limiting alone will not change
the server’s allocation to good and bad clients. Since the design goal
is that this allocation reflect available bandwidth, speak-up also
needs a mechanism to reveal that bandwidth: speak-up must per-
form encouragement, which we define as causing a client to send
more traffic—potentially much more—for a single request than it
would if the server were unattacked. Third, given the incoming
bandwidths, speak-up needs a proportional allocation mechanism
to admit clients at rates proportional to their delivered bandwidth.

To implement these mechanisms, speak-up uses a front-end to
the server, called the thinner, depicted in Figure 1(b). The thinner
implements encouragement and controls which requests the server
sees. Encouragement can take several forms; the two variations of
speak-up below, in §3.2 and §3.3, each incorporate a different one
with correspondingly distinct proportional allocation mechanisms.
Before presenting these, we observe that today when a server is
overloaded and fails to respond to a request, a client typically times
out and retries—thereby generating more traffic than if the server
were unloaded. However, the bandwidth increase is small (since
today’s timeouts are long). In contrast, encouragement (which is
initiated by an agent of the server) will cause good clients to send
significantly more traffic—while still obeying congestion control.

3.2 Random Drops and Aggressive Retries
In the version of speak-up that we now describe, the thinner imple-
ments proportional allocation by dropping requests at random to
reduce the rate to c. To implement encouragement, the thinner, for

each request that it drops, immediately asks the client to retry. This
synchronous please-retry signal causes the good clients—the bad
ones are already “maxed out”—to retry at far higher rates than they
would under silent dropping. (Silent dropping happens in many ap-
plications and in effect says, “please try again later”, whereas the
thinner says, “please try again now”.)

With the scheme as presented thus far, a good client sends only
one packet per round-trip time (RTT) while a bad client can keep
many requests outstanding, thereby manufacturing an advantage.
To avoid this problem, we modify the scheme as follows: without
waiting for explicit please-retry signals, the clients send repeated
retries in a congestion-controlled stream. Here, the feedback used
by the congestion control protocol functions as implicit please-retry
signals. This modification allows all clients to pipeline their re-
quests and keep their pipe to the thinner full.

One might ask, “To solve the same problem, why not enforce
one outstanding retry per client?” or, “Why not dispense with re-
tries, queue clients’ requests, and serve the oldest?” The answer
is “spoofing and NAT”. Spoofing, as happens in our threat model
(§2.2), means that one client may claim to be several, and NAT
means that several clients (which may individually have plenty
of bandwidth) may appear to be one. Thus, the thinner can en-
force neither one outstanding retry per “client” nor any other quota
scheme that needs to identify clients. Ironically, taxing clients is
easier than identifying them: the continuous stream of bytes that
clients are asked to send ensures that each is charged individually.

Indeed, speak-up is a currency-based scheme (as we said ear-
lier), and the price for access is the number of retries, r, that a
client must send. Observe that the thinner does not communicate
r to clients: good clients keep resending until they get through (or
give up). Also, r automatically changes with the attack size.

This approach fulfills the design goal in §3.1, as we now show.
The thinner admits incoming requests with some probability p to
make the total load reaching the server be c. There are two cases.
Either the good clients cannot afford the price, in which case they
exhaust all of their bandwidth and do not get service at rate g, or
they can afford the price, in which case they send retries until get-
ting through. In both cases, the price, r, is 1/p. In the first case, a
load of B+G enters the thinner, so p = c

B+G , r = B+G
c , and the good

clients can pay for G/r = G
G+B c requests per second. In the second

case, the good clients get service at rate g, as required.

3.3 Explicit Payment Channel
We now describe another encouragement mechanism, which we
use in our implementation and evaluation. Conceptually, the thin-
ner asks clients to pad their requests with dummy bytes. However,
instead of having to know the correct amount of padding and com-
municate it to clients, the thinner does the following. When the
server is overloaded, the thinner asks a requesting client to open

a separate payment channel. The client then sends a congestion-
controlled stream of bytes on this channel. We call a client that
is sending bytes a contending client; the thinner tracks how many
bytes each contending client sends. Assume that the server notifies
the thinner when it is ready for a new request. When the thinner
receives such a notification, it holds a virtual auction: it admits to
the server the contending client that has sent the most bytes, and it
terminates the corresponding payment channel.

As with the version in §3.2, the price here emerges naturally.
Here, it is expressed in bytes per request. The “going rate” for ac-
cess is the winning bid from the most recent auction. We now con-
sider the average price. Here, we express B and G in bytes (not
requests) per second and assume that the good and bad clients are
“spending everything”, so B+G bytes per second enter the thinner.
Since auctions happen every 1/c seconds on average, the average
price is B+G

c bytes per request.
However, we cannot claim, as in §3.2, that good clients get

G
G+B c requests served per second: the auction might allow “gaming”
in which adversaries consistently pay a lower-than-average price,
forcing good clients to pay a higher-than-average price. We show
in §3.4 that the auction can be gamed but not too badly, so all clients
do in fact see prices that are close to the average.

Comparison. There are two main differences between the
scheme in §3.2 and this one. First, with the other scheme, the thin-
ner must determine p and apply it in a way that cannot be “gamed”;
here, the thinner’s rule is simply to select the top-paying client. Sec-
ond, with the other scheme, clients pay in-band. Which option is
appropriate—payment in-band or on a separate channel—depends
on the application. For example, our prototype (§6) needs the latter
option for reasons related to how JavaScript drives Web browsers.

3.4 Robustness to Cheating
In considering the robustness of the virtual auction mechanism, we
begin with a theorem and then describe how practice may be both
worse and better than this theory. The theorem is based on one sim-
plifying assumption: that requests are served with perfect regularity
(i.e., every 1/c seconds).

Theorem 3.1 In a system with regular service intervals, any client
that continuously transmits an ε fraction of the average bandwidth
received by the thinner gets at least an ε/2 fraction of the service,
regardless of how the bad clients time or divide up their bandwidth.

Proof: Consider a client, X, that transmits an ε fraction of the av-
erage bandwidth. The intuition is that to keep X from winning auc-
tions, the other clients must deliver substantial payment.

Because our claims are purely about proportions, we choose
units to keep the discussion simple. We call the amount of band-
width that X delivers between every pair of auctions a dollar. Sup-
pose that X must wait t auctions before winning k auctions. Let t1
be the number of auctions that occur until (and including) X’s first
win, t2 the number that occur after that until and including X’s sec-
ond win, and so on. Thus, ∑k

i=1 ti = t. Since X does not win until
auction number t1, X is defeated in the previous auctions. In the
first auction, X has delivered 1 dollar, so at least 1 dollar is spent to
defeat it; in the next auction 2 dollars are needed to defeat it, and so
on until the (t1−1)st auction when t1−1 dollars are spent to defeat it.
So 1+2+ · · ·+(t1−1) = t1(t1−1)/2 dollars are spent to defeat X be-
fore it wins. More generally, the total dollars spent by other clients
over the t auctions is at least ∑k

i=1
t2i −ti

2 =

∑k
i=1

t2i
2 −

t
2 . This sum is

minimized, subject to
∑ ti = t, when all the ti are equal, namely

ti = t/k. We conclude that the total spent by the other clients is at
least

∑k
i=1

t2
2k2 −

t
2 =

t2
2k −

t
2 .

Adding the t dollars spent by X, the total number of dollars spent
is at least t2

2k +
t
2 . Thus the fraction of the total spent by X, which

we called ε, is at most 2/(t/k + 1). It follows that k/t ≥ ε

2−ε ≥ ε/2,
i.e., X receives at least an ε/2 fraction of the service.

Observe that this analysis holds for each good client separately.
It follows that if the good clients deliver in aggregate an α fraction
of the bandwidth, then in aggregate they will receive an α/2 frac-
tion of the service. Note that this claim remains true regardless of
the service rate c, which need not be known to carry out the auction.

Theory versus practice. We now consider ways in which the
above theorem is both weaker and stronger than what we expect
to see in practice. We begin with weaknesses. First, consider the
unreasonable assumption that requests are served with perfect reg-
ularity. The theorem can be trivially extended: for service times
that fluctuate within a bounded range [(1 − δ)/c, (1 + δ)/c] (as in
our implementation; see §6), X receives at least a (1 − 2δ)ε/2 frac-
tion of the service. However, even this looser restriction may be
unrealistic in practice. And pathological service timings violate the
theorem. For example, if many request fulfillments are bunched in
a tiny interval during which X has not yet paid much, bad clients
can cheaply outbid it during this interval, if they know that the
pathology is happening and are able to time their bids. But doing
so requires implausibly deep information.

Second, the theorem assumes that a good client “pays bytes”
at a constant rate given by its bandwidth. However, the payment
channel in our implementation runs over TCP, and TCP’s slow start
means that a good client’s rate must grow. Moreover, because we
implement the payment channel as a series of large HTTP POSTs
(see §6), there is a quiescent period between POSTs (equal to two
RTTs between client and thinner) as well as TCP’s slow start for
each POST. Nevertheless, we can extend the analysis to capture this
behavior and again derive a lower bound for the fraction of service
that a given good client receives. The result is that if the good client
has a small fraction of the total bandwidth (causing it to spend a lot
of time paying), and if the HTTP POST is big compared to the
bandwidth-delay product, then the client’s fraction of service is not
noticeably affected (because the quiescent periods are negligible
relative to the time spent paying at full rate).

We now consider the strength of the theorem: it makes no as-
sumptions at all about adversarial behavior. We believe that in prac-
tice adversaries will attack the auction by opening many concurrent
TCP connections to avoid quiescent periods, but the theorem han-
dles every other case too. The adversary can open few or many TCP
connections, disregard TCP semantics, or send continuously or in
bursts. The only parameter in the theorem is the total number of
bytes sent (in a given interval) by other clients.

The theorem does cede the adversary an extra factor of two “ad-
vantage” in bandwidth (the good client sees only ε/2 service for
ε bandwidth). This advantage arises because the proof lets the ad-
versary control exactly when its bytes arrive—sending fewer when
the good client’s bid is small and more as the bid grows. This abil-
ity is powerful indeed—most likely stronger than real adversaries
have. Nevertheless, even with this highly pessimistic assumption
about adversarial abilities, speak-up can still do its job: the re-
quired provisioning has only increased by a factor of 2 over the
ideal from §3.1—and this required provisioning is still far less than
would be required to absorb the attack without speak-up.

In §7.4, we quantify the adversarial advantage in our experi-
ments by determining how the factors mentioned in this section—
quiescent periods for good clients, bad clients opening concurrent
connections, etc.—affect the required provisioning above the ideal.

4 REVISITING ASSUMPTIONS
We have so far made a number of assumptions. Below we address
four of them in turn: that aside from end-hosts’ access links, the In-
ternet has infinite capacity; that no bottleneck link is shared (which
is a special case of the previous assumption, but we address it sep-
arately); that the thinner has infinite capacity; and that bad clients
consume all of their upload bandwidth when they attack. In the next
section, we relax the assumption of equal server requests.

4.1 Speak-up’s Effect on the Network
No flow between a client and a thinner individually exhibits anti-
social behavior. In our implementation, each payment channel com-
prises a series of HTTP POSTs (see §6) and thus inherits TCP’s
congestion control. (For UDP applications, the payment channel
could use the congestion manager [3] or DCCP [22].) However,
such individual courtesies do not automatically excuse the larger
rudeness of increased traffic levels, and we must ask whether the
network can handle this increase.

We give two sketchy arguments suggesting that speak-up would
not much increase total traffic and then consider the effect of such
increases. First, speak-up inflates upload bandwidth, and, despite
the popularity of peer-to-peer file-sharing, most bytes still flow in
the download direction [15]. Thus, inflating upload traffic even to
the level of download traffic would cause an inflation factor of at
most two. Second, only a very small fraction of Internet servers is
attacked at any one time. Thus, even if speak-up did increase the
traffic to each attacked site by an order of magnitude, the increase
in overall Internet traffic would still be small.

Whatever the overall traffic increase, it is unlikely to be problem-
atic for the Internet “core”: both anecdotes from network operators
and measurements [15] suggest that these links operate at low uti-
lization. And, while the core cannot handle every client transmitting
maximally (as argued in [46]), we expect that the fraction of clients
doing so at any time will be small—again, because few sites will be
attacked at any time. Speak-up will, however, create contention at
bottleneck links, an effect that we explore experimentally in §7.7.

4.2 Shared Links
We now consider what happens when clients that share a bottleneck
link are simultaneously encouraged by the thinner. For simplicity,
assume two clients behind bottleneck link l; the discussion gener-
alizes to more clients. If the clients are both good, their individual
flows roughly share l, so they get roughly the same piece of the
server. Each may be disadvantaged compared to clients that are not
similarly bottlenecked, but neither is disadvantaged relative to the
other. If, however, one of the clients is bad, then the good client
has a problem: the bad client can open n parallel TCP connections
(§3.4), claim roughly an n/(n+1) fraction of l’s bandwidth, and get
a much larger piece of the server. While this outcome is unfortunate
for the good client, observe, first, that the server is still protected
(the bad client can “spend” at most l). Second, while the thinner’s
encouragement might instigate the bad client, the fact is that when
a good and bad client share a bottleneck link—speak-up or no—
the good client loses: the bad client can always deny service to the
good client. We experimentally investigate such sharing in §7.6.

4.3 Provisioning the Thinner
For speak-up to work, the thinner must be uncongested: a congested
thinner could not “get the word out” to encourage clients. Thus, the
thinner needs enough bandwidth to absorb a full DDoS attack and
more (which is condition C1 in §2.2). It also needs enough process-
ing capacity to handle the dummy bytes. (Meeting this requirement

is far easier than provisioning the server to handle the full attack
because the thinner does not do much per-request processing.) We
now argue that meeting these requirements is plausible.

One study of observed DoS attacks found that the 95th percentile
of attack size is in the low hundreds of Mbits/s [38], which agrees
with other anecdotes (e.g., [45]). The traffic from speak-up would
presumably be multiples larger since the good clients would also
send at high rates. However, even with several Gbits/s of traffic in
an attack, the thinner’s requirements are not insurmountable.

First, providers readily offer links, even temporarily (e.g., [33]),
that accommodate these speeds. Such bandwidth is expensive, but
co-located servers could share a thinner, or else the ISP could pro-
vide the thinner as a service (see condition C1 in §2.2). Second,
we consider processing capacity. Our unoptimized software thin-
ner running on commodity hardware can handle 1.5 Gbits/s of traf-
fic and tens or even hundreds of thousands of concurrent clients;
see §7.1. A production solution would presumably do much better.

4.4 Attackers’ Constraints
The assumption that bad clients are today “maxing out” their up-
load bandwidth was made for ease of exposition. The required
assumption is only that bad clients consistently make requests at
higher rates than legitimate clients. Specifically, if bad clients are
limited by their download bandwidth, or they are not maxed out at
all today, speak-up is still useful: it makes upload bandwidth into
a constraint by forcing everyone to spend this resource. Since bad
clients—even those that aren’t maxed out—are more active than
good ones, the imposition of this upload bandwidth constraint af-
fects the bad clients more, again changing the mix of the server that
goes to the good clients. Our goals and analysis in §3 still hold: they
are in terms of the bandwidth available to both populations, not the
bandwidth that they actually use today.

5 HETEROGENEOUS REQUESTS
We now generalize the design to handle the more realistic case
when the requests are unequal. We make the worst-case assump-
tion that the thinner does not know their difficulty in advance but
attackers do, as given by the threat model in §2.2. If the thinner
treated all requests equally (charging, in effect, the average price
for any request), an attacker could get a disproportionate share of
the server by sending only the hardest requests.

In describing the generalization to the design, we make two as-
sumptions:

• As in the homogeneous case, the server processes only one re-
quest at a time. Thus, the “hardness” of a computation is mea-
sured by how long it takes to complete. Relaxing this assump-
tion to account for more complicated servers is not difficult, as
long as the server implements processor sharing among concur-
rent requests, but we don’t delve into those details here.

• The server exports an interface that allows the thinner to SUS-
PEND, RESUME, and ABORT requests. (Many transaction
managers and application servers support such an interface.)

At a high level, the solution is for the thinner to break time into
quanta, to see each request as comprising equal-sized chunks that
consume a quantum of the server’s attention, and to hold a virtual
auction for each quantum. Thus, if a client’s request is made of x
chunks, the client must win x auctions for its request to be fully
served. The thinner need not know x in advance for any request.

In more detail: rather than terminate the payment channel once
the client’s request is admitted (as in §3.3), the thinner extracts

an on-going payment until the request completes. Given these on-
going payments, the thinner implements the following procedure
every τ seconds (τ is the quantum length):
1. Let v be the currently-active request. Let u be the contending

request that has paid the most.
2. If u has paid more than v, then SUSPEND v, admit (or RE-

SUME) u, and set u’s payment to zero.
3. If v has paid more than u, then let v continue executing but set v’s

payment to zero (since v has not yet paid for the next quantum).
4. Time-out and ABORT any request that has been SUSPENDed

for some period (e.g., 30 seconds).
This scheme requires some cooperation from the server. First, the
server should not SUSPEND requests that hold critical locks; do-
ing so could cause deadlock. Second, SUSPEND, RESUME, and
ABORT should have low overhead.

6 IMPLEMENTATION
We implemented a prototype thinner in C++ as an OKWS [23] Web
service using the SFS toolkit [26]. It runs on Linux 2.6, exporting a
well-known URL. When a Web client requests this URL, the thin-
ner decides if, and when, to send this request to the server, using
the method in §3.3. The server is currently emulated, running in
the same address space as the thinner. The server “processes” re-
quests with a “service time” selected uniformly at random from
[.9/c, 1.1/c]. When the server responds to a request, the thinner
returns HTML to the client with that response. Any JavaScript-
capable Web browser can use our system; we have successfully
tested our implementation with Firefox, Internet Explorer, Safari,
and a custom client that we use in our experiments.

Whenever the emulated server is not free, the thinner returns
JavaScript to the Web client that causes it to automatically issue
two HTTP requests: (1) the actual request to the server, and (2)
a one-megabyte HTTP POST that is dynamically constructed by
the browser and that holds dummy data (one megabyte reflecting
some browsers’ limits on POSTs). The thinner delays responding
to the first HTTP request (because the response to that request has
to come from the server, which is busy). The second HTTP request
is the payment channel. If, while sending these dummy bytes, the
client wins the auction, the thinner terminates request (2) and gives
request (1) to the server. If, on the other hand, request (2) com-
pletes, the client has not yet received service; in this case, the thin-
ner returns JavaScript that causes the browser to send another large
POST, and the process continues. The thinner correlates the client’s
payments with its request via an “id” field in both HTTP requests.

One can configure the thinner to support hundreds of thousands
of concurrent connections by setting the maximum number of con-
nection descriptors appropriately. (The thinner evicts old clients as
these descriptors deplete.) With modern versions of Linux, the limit
on concurrent clients is not per-connection descriptors but rather
the RAM consumed by each open connection.

7 EXPERIMENTAL EVALUATION
To investigate the effectiveness and performance of speak-up, we
conducted experiments with our prototype thinner. Our primary
question is how the thinner allocates an attacked server to good
clients. To answer this question, we begin in §7.2 by varying the
bandwidth of good (G) and bad (B) clients, and measuring how the
server is allocated with and without speak-up. We also measure this
allocation with server capacities above and below the ideal in §3.1.
In §7.3, we measure speak-up’s latency and byte cost. In §7.4, we
ask how much bad clients can “cheat” speak-up to get more than a

Our thinner implementation allocates the emulated
server in rough proportion to clients’ bandwidths. §7.2, §7.5

In our experiments, the server needs to provision
only 15% beyond the bandwidth-proportional ideal
to serve all good requests.

§7.3, §7.4

Our unoptimized thinner implementation can sink
1.5 Gbits/s of uploaded “payment traffic”. §7.1

On a bottleneck link, speak-up traffic can crowd
out other speak-up traffic and non-speak-up traffic. §7.6, §7.7

Table 1: Summary of main evaluation results.

bandwidth-proportional share of the server. §7.5 shows how speak-
up performs when clients have differing bandwidths and latencies
to the thinner. We also explore scenarios in which speak-up traffic
shares a bottleneck link with other speak-up traffic (§7.6) and with
non-speak-up traffic (§7.7). Table 1 summarizes our results.

7.1 Setup and Method
All of the experiments described here ran on the Emulab
testbed [13]. The clients run a custom Python Web client and con-
nect to the prototype thinner in various emulated topologies. The
thinner runs on Emulab’s “PC 3000”, which has a 3 GHz Xeon
processor and 2 GBytes of RAM; the clients are allowed to run on
any of Emulab’s hardware classes.

All experiments run for 600 seconds. Each client runs on a sep-
arate Emulab host and generates requests. A request proceeds as
follows. The client first makes the actual request to the server. If
the server is busy, the thinner replies and makes the client issue two
HTTP requests: the original request and the payment bytes. Each
client’s requests are driven by a Poisson process of rate λ requests/s.
However, a client never allows more than a configurable number
w (the window) of outstanding requests. If the stochastic process
“fires” when more than w requests are outstanding, the client puts
the new request in a backlog queue, which drains when the client
receives a response to an earlier request. If a request is in this queue
for more than 10 seconds, it times out, and the client logs a service
denial. All requests are identical, and the server itself is emulated,
processing a request on average every 1/c seconds (see §6).

We use the behavior just described to model both good and bad
clients. A bad client, by definition, tries to capture more than its
fair share. We model this intent as follows: in our experiments, bad
clients send requests faster than good clients, and bad clients send
requests concurrently. Specifically, we choose λ = 40, w = 20 for
bad clients and λ = 2, w = 1 for good clients. (The w value for bad
clients is pessimistic; see §7.4.)

Our choices of B and G are determined by the number of clients
that we are able to run in the testbed and by a rough model of to-
day’s client access links. Specifically, in most of our experiments,
there are 50 clients, each with 2 Mbits/s of access bandwidth. Thus,
B +G usually equals 100 Mbits/s. This scale is smaller than most
attacks. Nevertheless, we believe that the results generalize because
we focus on how the prototype’s behavior differs from the theory
in §3. By understanding this difference, one can can make predic-
tions about speak-up’s performance in larger attacks.

Because the experimental scale does not tax the thinner, we sep-
arately measured its capacity and found that it can handle loads
comparable to recent attacks. At 90% CPU utilization on the hard-
ware described above with multiple gigabit Ethernet interfaces, in a
600-second experiment with a time series of 5-second intervals, the
thinner sinks payment bytes at 1451 Mbits/s (with standard devia-
tion of 38 Mbits/s) for 1500-byte packets and at 379 Mbits/s (with
standard deviation of 24 Mbits/s) for 120-byte packets. Many re-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.3 0.5 0.7 0.9Fr
ac

tio
n

of
 se

rv
er

 a
llo

ca
te

d
to

 g
oo

d
cl

ie
nt

s

Good clients’ fraction of total client bandwidth

With speak-up
Without speak-up

Ideal

Figure 2: Server allocation when c = 100 requests/s as a function
of G

G+B . The measured results for speak-up are close to the ideal line.
Without speak-up, bad clients sending at λ = 40 requests/s and w = 20
capture much more of the server.

 1

 0.8

 0.6

 0.4

 0.2

 0
200,OFF 200,ON100,OFF 100,ON50,OFF 50,ON

Fr
ac

tio
n

Capacity of the server (requests/sec)

Server allocation to good clients
Server allocation to bad clients

Fraction of good requests served

Figure 3: Server allocation to good and bad clients, and the fraction of
good requests that are served, without (“OFF”) and with (“ON”) speak-
up. c varies, and G = B = 50 Mbits/s. For c = 50, 100, the allocation is
roughly proportional to the aggregate bandwidths, and for c = 200, all
good requests are served.

cent attacks are roughly this size; see §2.1 and §4.3. The capacity
also depends on how many concurrent clients the thinner supports;
the limit here is only the RAM for each connection (see §6).

7.2 Validating the Thinner’s Allocation
When the rate of incoming requests exceeds the server’s capacity,
speak-up’s goal is to allocate the server’s resources to a group of
clients in proportion to their aggregate bandwidth. In this section,
we evaluate to what degree our implementation meets this goal.

In our first experiment, 50 clients connect to the thinner over a
100 Mbits/s LAN. Each client has 2 Mbits/s of bandwidth. We vary
f , the fraction of “good” clients (the rest are “bad”). In this homo-
geneous setting, G

G+B (i.e., the fraction of “good client bandwidth”)
equals f , and the server’s capacity is c = 100 requests/s.

Figure 2 shows the fraction of the server allocated to the good
clients as a function of f . Without speak-up, the bad clients capture
a larger fraction of the server than the good clients because they
make more requests and the server, when overloaded, randomly
drops requests. With speak-up, however, the good clients can “pay”
more for each of their requests—because they make fewer—and
can thus capture a fraction of the server roughly in proportion to
their bandwidth. The small difference between the measured and
ideal values is a result of the good clients not using as much of
their bandwidth as the bad clients. We discussed this adversarial
advantage in §3.4 and further quantify it in §7.3 and §7.4.

 0

 0.2

 0.4

 0.6

 0.8

 1

20010050

Pa
ym

en
t T

im
e

(s
ec

on
ds

)

Capacity of the server (requests/sec)

Mean
90th percentile

Figure 4: Mean time to upload dummy bytes for good requests that
receive service. c varies, and G = B = 50 Mbits/s. When the server is
not overloaded (c = 200), speak-up introduces little latency.

 0

 50

 100

 150

 200

 250

20010050

A
vg

 p
ay

m
en

t (
K

By
te

s)

Capacity of the server (requests/sec)

Upper Bound
Good

Bad

Figure 5: Average number of bytes sent on the payment channel—the
“price”—for served requests. c varies, and G = B = 50 Mbits/s. When
the server is overloaded (c = 50, 100), the price is close to the upper
bound, (G + B)/c; see the text for why they are not equal. When the
server is not overloaded (c = 200), good clients pay almost nothing.

In the next experiment, we investigate different “provisioning
regimes”. We fix G and B, and measure the server’s allocation when
its capacity, c, is less than, equal to, and greater than cid . Recall
from §3.1 that cid is the minimum value of c at which all good
clients get service, if speak-up is deployed and if speak-up allo-
cates the server exactly in proportion to client bandwidth. We set
G = B by configuring 50 clients, 25 good and 25 bad, each with a
bandwidth of 2 Mbits/s to the thinner over a LAN. In this scenario,
cid = 100 requests/s (from §3.1, cid = g(1 + B

G) = 2g = 2 · 25 · λ =
100), and we experiment with c = 50, 100, 200 requests/s.

Figure 3 shows the results. The good clients get a larger frac-
tion of the server with speak-up than without. Moreover, for c =
50, 100, the allocation under speak-up is roughly proportional to
the aggregate bandwidths, and for c = 200, all good requests are
served. Again, one can see that the allocation under speak-up does
not exactly match the ideal: from Figure 3, when speak-up is en-
abled and c = cid = 100, the good demand is not fully satisfied.

7.3 Latency and Byte Cost
We now explore the byte and latency cost of speak-up for the same
set of experiments (c varies, 50 clients, G = B = 50 Mbits/s).
For the latency cost, we measure the length of time that clients
spend uploading dummy bytes, which captures the extra latency
that speak-up introduces. Figure 4 shows the averages and 90th per-
centiles of these measurements for the served good requests.

 0

 0.1

 0.2

 0.3

 0.4

0.0 0.5 1.0 1.5 2.0 2.5

Fr
ac

tio
n

of
 se

rv
er

 a
llo

ca
te

d

Bandwidth (Mbits/sec)

Observed
Ideal

Figure 6: Heterogeneous client bandwidth experiments with 50 LAN
clients, all good. The fraction of the server (c = 10 requests/s) allocated
to the ten clients in category i, with bandwidth 0.5 · i Mbits/s, is close
to the ideal proportional allocation.

For the byte cost, we measure the number of bytes uploaded for
served requests—the “price”—as recorded by the thinner. Figure 5
shows the average of this measurement for good and bad clients
and also plots the theoretical average price, (G + B)/c, from §3.3,
which is labeled “Upper Bound”. The actual price is lower than this
theoretical one because the clients do not consume all of their band-
width, for reasons that we now describe. We consider the different
values of c in turn.

For c = 50, each good client spends an average of 1.25 Mbits/s
(determined by tallying the total bits spent by good clients over the
experiment). This average is less than the 2 Mbits/s access link be-
cause of a quiescent period between when a good client first issues
a request and when the thinner replies, asking for payment. This pe-
riod is roughly 0.35 seconds, the length owing to a long backlog at
the thinner of requests and payment bytes. When not in a quiescent
period, a good client consumes most of its access link, delivering
1.8 Mbits/s on average, inferred by dividing the average good client
payment (Figure 5) by the average time spent paying (Figure 4).

Bad clients, in contrast, keep multiple requests outstanding so do
not have “down time”. For c = 50, their payments are 1.7 Mbits/s
on average. They actually deliver slightly more than this number
but occasionally “waste” bytes. This wastage happens when a bad
client establishes a payment channel but—because its outbound
bandwidth is nearly fully utilized—fails to deliver the accompa-
nying request. Meanwhile, the thinner accepts payment for 10 sec-
onds, at which point it times out the payment channel.

The c = 100 case is similar to c = 50, except bad clients see a
higher price than good ones. The reason is as follows. Bad clients
waste bytes, as just described. In this case, however, some of the
requests actually arrive before the 10 seconds have elapsed—but
long after the client has paid enough to win the auction. In those in-
stances, bad clients overpay hugely, increasing their average price.

For c = 200, clients do not have to pay much because the server
is lightly loaded. In fact, good and bad clients often encounter a
price of zero, though bad clients again overpay sometimes.

7.4 Empirical Adversarial Advantage
As just discussed, bad clients are able to deliver more bytes than
good clients in our experiments. As a result of this disparity, the
server does not achieve the ideal of a bandwidth-proportional allo-
cation. This effect was visible in §7.2.

To better understand this adversarial advantage, we ask, What is
the minimum value of c at which all of the good demand is satis-
fied? To answer this question, we experimented with the same con-

 0

 0.1

 0.2

 0.3

 0 100 200 300 400 500

Fr
ac

tio
n

of
 se

rv
er

 a
llo

ca
te

d

RTT (ms)

All-good expt
All-bad expt

Ideal for both expts

Figure 7: Two sets of heterogeneous client RTT experiments with 50
LAN clients, all good or all bad. The fraction of the server (c = 10 re-
quests/s) captured by the 10 clients in category i, with RTT 100 · i ms,
varies for good clients. In contrast, bad clients’ RTTs don’t matter be-
cause they open multiple connections.

figuration as above (G = B = 50 Mbits/s; 50 clients) but for more
values of c. We found that all of the good demand is satisfied at
c = 115, which is only 15% more provisioning than cid, the capac-
ity needed under exact proportional allocation. We conclude that
a bad client can cheat the proportional allocation mechanism but
only to a limited extent—at least under our model of bad behavior.

We now revisit that model. We chose w = 20 to be conservative:
for other values of w between 1 and 60 (again, B = G, c = 100),
the bad clients capture less of the server. (We hypothesize that for
w > 20, the damage from wasted bytes exceeds the benefit from
no quiescence.) However, the qualitative model does have weak-
nesses. For example, our bad clients sometimes overpay (as dis-
cussed in §7.3), and a truly pessimal bad client would not. Never-
theless, the analysis in §3.4 shows that bad clients cannot do much
better than the naı̈ve behavior that we model.

7.5 Heterogeneous Network Conditions
We now investigate the server’s allocation for different client band-
widths and RTTs. We begin with bandwidth. We assign 50 clients
to 5 categories. The 10 clients in category i (1 ≤ i ≤ 5) have band-
width 0.5 · i Mbits/s and are connected to the thinner over a LAN.
All clients are good. The server has capacity c = 10 requests/s. Fig-
ure 6 shows that the resulting server allocation to each category is
close to the bandwidth-proportional ideal.

We now consider RTT, hypothesizing that the RTT between a
good client and the thinner will affect the allocation, for two rea-
sons. First, at low prices, TCP’s ramp-up means that clients with
longer RTTs will take longer to pay. Second, and more importantly,
each request has at least one associated quiescent period (see §7.1
and §7.3), the length of which depends on RTT. In contrast, bad
clients have multiple requests outstanding so do not have “down
time” and will not be much affected by their RTT to the thinner.

To test this hypothesis, we assign 50 clients to 5 categories. The
10 clients in category i (1 ≤ i ≤ 5) have RTT = 100 · i ms to the
thinner, giving a wide range of RTTs. All clients have bandwidth 2
Mbits/s, and c = 10 requests/s. We experiment with two cases: all
clients good and all bad. Figure 7 confirms our hypothesis: good
clients with longer RTTs get a smaller share of the server while for
bad clients, RTT matters little. This result may seem unfortunate,
but the effect is limited: for example, in this experiment, no good
client gets more than double or less than half the ideal.

 1
 0.8
 0.6
 0.4
 0.2

 0
25 good, 5 bad15 good,15 bad5 good, 25 bad

Fr
ac

tio
n

Number of clients behind shared bottleneck

Actual fraction of ‘bottleneck service’ to good
Actual fraction of ‘bottleneck service’ to bad
Ideal fraction of ‘bottleneck service’ to good

Ideal fraction of ‘bottleneck service’ to bad
Ideal fraction served: bottlenecked good

Actual fraction served: bottlenecked good

Figure 8: Server allocation when good and bad clients share a bottle-
neck link, l. “Bottleneck service” refers to the portion of the server cap-
tured by all of the clients behind l. The actual breakdown of this portion
(left bar) is worse for the good clients than the bandwidth-proportional
allocation (middle bar) because bad clients “hog” l. The right bar fur-
ther quantifies this effect.

7.6 Good and Bad Clients Sharing a Bottleneck
When good clients share a bottleneck link with bad ones, good re-
quests can be “crowded out” by bad ones before reaching the thin-
ner (see §4.2). We quantify this observation with an experiment that
uses the following topology: 30 clients, each with a bandwidth of
2 Mbits/s, connect to the thinner through a common link, l. The
bandwidth of l is 40 Mbits/s. l is a bottleneck because the clients
behind l can generate 60 Mbits/s. Also, 10 good and 10 bad clients,
each with a bandwidth of 2 Mbits/s, connect to the thinner directly
through a LAN. The server’s capacity is c = 50 requests/s. We vary
the number of good and bad clients behind l.

In all cases, the clients behind l together capture half of the
server’s capacity (as expected, given the topology). We measure
how this “server half” is allocated to the good and bad clients be-
hind l. We also measure, of the good requests that originate behind
l, what fraction receive service. Figure 8 depicts these measure-
ments and compares them to the bandwidth-proportional ideals.2
The effect on good clients, visible in the figure, will likely be more
pronounced when the bottleneck’s bandwidth is a smaller fraction
of the combined bandwidth behind it.

7.7 Impact of Speak-up on Other Traffic
We now consider how speak-up affects other traffic, specifically
what happens when a TCP endpoint, H, shares a bottleneck link,
m, with clients that are currently uploading dummy bytes. The case
when H is a TCP sender is straightforward: m will be shared among
H’s transfer and the speak-up uploads. When H is a TCP receiver,
the extra traffic from speak-up affects H in two ways. First, ACKs
from H will be lost (and delayed) more often than without speak-
up. Second, for request-response protocols (e.g., HTTP), H’s re-
quest can be delayed. Here, we investigate these effects on HTTP
downloads.

We experiment with the following setup: 10 good speak-up
clients share a bottleneck link, m, with H, a host that runs the HTTP
client wget. m has a bandwidth of 1 Mbit/s and one-way delay
100 ms. Each of the 11 clients has a bandwidth of 2 Mbits/s. On
the other side of m are the thinner (fronting a server with c = 2

2For the first measurement, the ideal is simply the fraction of good
and bad clients behind l. For the second measurement, the ideal pre-
sumes that the non-bottlenecked clients each have 2 Mbits/s of band-
width and that the clients behind l have 2(40

60) Mbits/s.

 0

 1

 2

 3

 4

 1 10 100

En
d-

to
-e

nd
 la

te
nc

y
(s

ec
on

ds
)

Size of HTTP Transfer (KBytes)

Without speak-up
With speak-up

Figure 9: Effect on an HTTP client of sharing a bottleneck link with
speak-up clients. Graph shows means and standard deviations of end-
to-end HTTP download latency with and without speak-up running, for
various HTTP transfer sizes (which are shown on a log scale).

requests/s) and a separate Web server, S . In each experiment, H
downloads a file from S 100 times.

Figure 9 shows the means and standard deviations of the down-
load latency for various file sizes, with and without the speak-up
traffic. There is significant “collateral damage” to “innocently by-
standing” Web transfers here: download times inflate by almost
6× for a 1 Kbyte (single packet) transfer and by almost 4.5× for
64 Kbyte transfers. However, this experiment is quite pessimistic:
the RTTs are large, the bottleneck bandwidth is highly restrictive
(roughly 20× smaller than the demand), and the server capacity is
low. While speak-up is clearly the exacerbating factor in this exper-
iment, speak-up will not have this effect on every link.

8 RELATED WORK
In this section, we first survey related work in the context of com-
paring speak-up to other defenses against application-level DDoS
attacks. (For other attacks and defenses, see the survey by Mirkovic
and Reiher [28] and the bibliographies in [21,29,51].) We then dis-
cuss how and when to combine speak-up with other defenses.

8.1 Comparisons to Related Work
Using the taxonomy in §1 (massive over-provisioning, detect and
block, currency), speak-up is a currency scheme. The currency con-
cept was pioneered by Dwork and Naor [12] in the context of spam
defense. Others have done work in the same spirit [1,6,7,11,20,25,
49]; these approaches are often called proof-of-work schemes.

We first proposed bandwidth as a currency in a workshop pa-
per [48]. In contrast to [48], this paper gives a viable mechanism
and an implementation, evaluation, and analysis of that mechanism;
presents a solution to the “unequal requests” case; and considers
context and alternate DDoS defenses much more completely.

We do not know of another proposal to use bandwidth as a cur-
rency. However, the authors of [17, 39] describe a solution to DoS
attacks on servers’ computational resources in which good clients
send a fixed number of copies of their messages and the server only
processes a fixed fraction of the messages that it receives, thereby
diminishing adversaries’ impact. Our work shares an ethos but has
a very different realization. In that work, the drop probability and
repeat count are hard-coded, and the approach does not apply to
HTTP. Further, the authors do not consider congestion control, the
implications of deployment in today’s Internet, and the unequal re-
quests case. Also, Gligor [16] observes that client retries and time-
outs require less overhead while still providing the same qualita-
tive performance bounds as proof-of-work schemes. Because the

general approach does not meet his more exacting performance re-
quirements, he does not consider using bandwidth as currency.

Although we do not claim that bandwidth is strictly better than
other currencies, we do think it is particularly natural. With other
currencies, the server must either report an explicit price (e.g., by
sending a puzzle with a specific hardness) or have the clients guess
the price. With speak-up, in contrast, this function happens auto-
matically: the correct price emerges, and neither the thinner nor the
client has to know the price in advance.

The drawbacks of currency-based schemes are, first, that the
good clients must have enough currency [24] (e.g., speak-up only
applies when the good clients have enough bandwidth) and, second,
that the currency can be unequally distributed (e.g., some clients
have faster uplinks than others). We discuss this latter disadvantage
in §9. Another critique of currency schemes is that they give attack-
ers some service so might be weaker than the schemes we discuss
below (such as profiling) that seek to block attackers. However, un-
der those schemes, a smart bot can imitate a good client, succeed
in fooling the detection discipline, and again get some service.

The most commonly deployed defense [30] is a combination of
link over-provisioning [33] and profiling, which is a detect-and-
block approach offered by several vendors [5, 9, 27]. These latter
products build a historical profile of the defended server’s clientele
and, when the server is attacked, block traffic violating the profile.
Many other detect-and-block schemes have been proposed; we now
mention a few. Resource containers [8] perform rate-limiting to al-
locate the server’s resources to clients fairly. Defenses based on
CAPTCHAs [47] (e.g., [29, 42]) use reverse Turing tests to block
bots. Killbots [21] combines CAPTCHAs and rate-limiting, defin-
ing a bot as a non-CAPTCHA answering host that sends too many
requests to an overloaded server. With capabilities [4, 50, 51], the
network blocks traffic not authorized by the application; to de-
cide which traffic to authorize, the application can use rate-limiting,
CAPTCHAs, or other rules.

One critique of detect-and-block methods is that they can err.
CAPTCHAs can be thwarted by “bad humans” (cheap labor hired
to attack a site or induced [32] to solve the CAPTCHAs) or “good
bots” (legitimate, non-human clientele or humans who do not an-
swer CAPTCHAs). Schemes that rate-limit clients by IP address
can err with NAT (a large block of customers is rate-limited as one
customer) or spoofing (a small number of clients can get a large
piece of the server). Profiling apparently addresses some of these
shortcomings today (e.g., many legitimate clients behind a NAT
would cause the NAT’s external IP address to have a higher baseline
rate in the server’s profile). However, in principle such “behavior-
based” techniques can also be “fooled”: a set of savvy bots could,
over time, “build up” their profile by appearing to be legitimate
clients, at which point they could abuse their profile and attack.

8.2 Combining with Related Work
Practical DDoS defense involves composing various methods from
the taxonomy in §1. We do not outline a complete DDoS protec-
tion strategy here but only discuss how to protect two classes of re-
sources. First, all sites, whether using speak-up or not, must defend
their access links from saturation. Speak-up in particular requires
that the thinner is not congested (§4.3). The best current strategy
for link defense seems to be a combination of over-provisioning
(e.g., [33]), blocking obviously spurious traffic (e.g., ICMP floods),
and shaping “in-band” traffic via historical profiling (e.g., [5,9,27]).

Second, sites with scarce computational resources must imple-
ment application-level defense. Given that profiling is required
to protect the link anyway, we must ask when it suffices as an
application-level defense. Our answer is when the following condi-

tions all hold: no pre-defined clientele (C3 from §2.2); non-human
clientele (C4); and the negation of C5, i.e., when requests cause
equal amounts of work, when spoofing is implausible, and when
bots trigger alarms. We now briefly consider what to do when the
conditions for profiling are not met. When C3 doesn’t hold, one can
use capabilities [4,50,51] or explicit filters. When C4 doesn’t hold,
one may be able to use CAPTCHAs to preferentially admit humans.
And of course, when C5 does hold, and when C1 and C2 do too,
we advocate speak-up as the application-level DDoS defense.

9 OBJECTIONS
Even under the conditions when speak-up is most applicable, it may
still raise objections, some of which we now address.

Bandwidth envy. Before speak-up, all good clients competed
equally for a small share of the server. Under speak-up, more good
clients are “better off” (i.e., can claim a larger portion of the server).
But since speak-up allocates the server’s resources in proportion to
a client’s bandwidth, high-bandwidth good clients are “more bet-
ter off”, and this inequality might be problematic. However, ob-
serve that unfairness only occurs under attack. Thus, while we
think this inequality is unfortunate, it is not fatal. A possible so-
lution is for ISPs with low-bandwidth customers to offer access to
high-bandwidth proxies whose purpose is to “pay bandwidth” to
the thinner. These proxies would have to allocate their resources
fairly—perhaps by implementing speak-up recursively.

Variable bandwidth costs. In some countries, customers pay
their ISPs “per-bit”. For those customers, access to a server de-
fended by speak-up (and under attack) would cost more than usual.
One possible solution is the proxy mentioned above. Another one
is a “price tag”: the thinner would expose the “going rate” in bytes,
and the ISP would translate this figure to money and report it to
customers, letting them choose whether to pay for access.

Incentives for ISPs. One might ask whether speak-up gives ISPs
an incentive to encourage botnets as a way to increase the band-
width demanded by good clients. Our response is that such mis-
alignment of incentives can happen in many commercial relation-
ships (e.g., investment managers who needlessly generate commis-
sions), but society relies on a combination of regulation, profes-
sional norms, and reputation to limit harmful conduct.

Solving the wrong problem. One might ask, “If the problem is
bots, then shouldn’t researchers address that mess instead of en-
couraging more traffic?” Our answer to this philosophical question
is that cleaning up bots is crucial, but even if bots are curtailed by
orders of magnitude, a server with scarce computational resources
must still limit bots’ influence. Speak-up is a way to do so.

Flash crowds. Speak-up treats a flash crowd (overload from
good clients alone) just like an application-level DDoS attack. This
fact might appear unsettling. Observe, however, that it does not ap-
ply to the canonical case of a flash crowd, in which a hyperlink from
slashdot.org overwhelms a residential Web site’s access link:
speak-up would not have been deployed to defend a low-bandwidth
site (see §2.2). For sites in our applicability regime, making good
clients “bid” for access when all clients are good is certainly not
ideal, but the issues here are the same as with speak-up in general.

10 CONCLUSION
This study has sought to answer two high-level questions:
(1) Which conditions call for speak-up’s peculiar brand of protec-
tion? (2) Does speak-up admit a practical design? Notably absent
from this list is a question about how often the conditions in (1) do

and will hold, i.e., who needs speak-up? To answer that question
definitively will require not just a measurement effort but also a
broader “market survey”—a survey about demand that, to be credi-
ble, will have to gather the opinions of network operators, server
operators, and even users. Rather than trying to see who would
buy—which we plan to do next—we decided first to see what we
could build. Perhaps our priorities were inverted. Nevertheless, we
report our main finding: based on the design, analysis, and eval-
uation of a prototype and subject to much future work and many
issues, we can give a cautiously affirmative answer to question (2).

Acknowledgments
We thank the HotNets 2005 attendees, especially Nick Feamster,
Vern Paxson, Adrian Perrig, and Srini Seshan, for important cri-
tiques of our approach; Frans Kaashoek, Max Krohn, Sara Su,
Arvind Thiagarajan, Keith Winstein, and the anonymous reviewers,
both regular and shadow PC, for excellent comments on drafts; Ben
Adida, Dave Andersen, Micah Brodsky, Russ Cox, Jon Crowcroft,
Nick Feamster, Sachin Katti, Eddie Kohler, Christian Kreibich,
Max Poletto and Andrew Warfield, for useful conversations; and
Emulab [13]. This work was supported by the NSF under grants
CNS-0225660 and CNS-0520241, by an NDSEG Graduate Fellow-
ship, and by British Telecom.

References
[1] M. Abadi, M. Burrows, M. Manasse, and T. Wobber. Moderately

hard, memory-bound functions. In NDSS, 2003.
[2] S. Agarwal, T. Dawson, and C. Tryfonas. DDoS mitigation via

regional cleaning centers. Sprint ATL Research Report
RR04-ATL-013177, Aug. 2003.

[3] D. G. Andersen et al. System support for bandwidth
management and content adaptation in Internet applications. In
OSDI, Sept. 2000.

[4] T. Anderson, T. Roscoe, and D. Wetherall. Preventing Internet
denial-of-service with capabilities. In HotNets, Nov. 2003.

[5] Arbor Networks, Inc. http://www.arbornetworks.com.
[6] T. Aura, P. Nikander, and J. Leiwo. DoS-resistant authentication

with client puzzles. In Intl. Wkshp. on Security Prots., 2000.
[7] A. Back. Hashcash. http://www.cypherspace.org/adam/hashcash/.
[8] G. Banga, P. Druschel, and J. C. Mogul. Resource containers: A

new facility for resource management in server systems. In
OSDI, Feb. 1999.

[9] Cisco Guard, Cisco Systems, Inc. http://www.cisco.com.
[10] Criminal Complaint: USA v. Ashley, Hall, Schictel, Roby, and

Walker, Aug. 2004. http://www.reverse.net/operationcyberslam.pdf.
[11] C. Dwork, A. Goldberg, and M. Naor. On memory-bound

functions for fighting spam. In CRYPTO, 2003.
[12] C. Dwork and M. Naor. Pricing via processing or combatting

junk mail. In CRYPTO, 1992.
[13] Emulab. http://www.emulab.net.
[14] N. Feamster, J. Jung, and H. Balakrishnan. An empirical study

of “bogon” route advertisements. CCR, 35(1), Jan. 2005.
[15] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll,

R. Rockell, T. Seely, and C. Diot. Packet-level traffic
measurements from the Sprint IP backbone. IEEE Network,
17(6), 2003.

[16] V. D. Gligor. Guaranteeing access in spite of distributed
service-flooding attacks. In Intl. Wkshp. on Security Prots., 2003.

[17] C. A. Gunter, S. Khanna, K. Tan, and S. Venkatesth. DoS
protection for reliably authenticated broadcast. In NDSS, 2004.

[18] M. Handley. Internet architecture WG: DoS-resistant Internet
subgroup report, 2005. http://www.communicationsresearch.net/dos-
resistant/meeting-1/cii-dos-summary.pdf.

[19] Honeynet Project and Research Alliance. Know your enemy:
Tracking botnets. Mar. 2005. http://www.honeynet.org/papers/bots/.

[20] A. Juels and J. Brainard. Client puzzles: A cryptographic
countermeasure against connection depletion attacks. In NDSS,
1999.

[21] S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botz-4-sale:
Surviving organized DDoS attacks that mimic flash crowds. In
USENIX NSDI, May 2005.

[22] E. Kohler, M. Handley, and S. Floyd. Designing DCCP:
Congestion control without reliability. In SIGCOMM, Sept.
2006.

[23] M. Krohn. Building secure high-performance Web services with
OKWS. In USENIX Technical Conference, June 2004.

[24] B. Laurie and R. Clayton. “Proof-of-Work” proves not to work;
version 0.2, Sept. 2004.
http://www.cl.cam.ac.uk/users/rnc1/proofwork2.pdf.

[25] D. Mankins, R. Krishnan, C. Boyd, J. Zao, and M. Frentz.
Mitigating distributed denial of service attacks with dynamic
resource pricing. In Proc. IEEE ACSAC, Dec. 2001.

[26] D. Mazières. A toolkit for user-level file systems. In USENIX
Technical Conference, June 2001.

[27] Mazu Networks, Inc. http://mazunetworks.com.
[28] J. Mirkovic and P. Reiher. A taxonomy of DDoS attacks and

DDoS defense mechanisms. CCR, 34(2), Apr. 2004.
[29] W. Morein, A. Stavrou, D. Cook, A. Keromytis, V. Mishra, and

D. Rubenstein. Using graphic turing tests to counter automated
DDoS attacks against Web servers. In ACM CCS, Oct. 2003.

[30] Network World. Extortion via DDoS on the rise. May 2005.
http://www.networkworld.com/news/2005/051605-ddos-extortion.html.

[31] K. Park, V. S. Pai, K.-W. Lee, and S. Calo. Securing Web
service by automatic robot detection. In USENIX Technical
Conference, June 2006.

[32] Pittsburgh Post-Gazette. CMU student taps brain’s game skills.
Oct. 5, 2003. http://www.post-gazette.com/pg/03278/228349.stm.

[33] Prolexic Technologies, Inc. http://www.prolexic.com.
[34] A. Ramachandran and N. Feamster. Understanding the

network-level behavior of spammers. In SIGCOMM, Sept. 2006.
[35] V. Ramasubramanian and E. G. Sirer. The design and

implementation of a next generation name service for the
Internet. In SIGCOMM, Aug. 2004.

[36] E. Ratliff. The zombie hunters. The New Yorker, Oct. 10, 2005.
[37] SecurityFocus. FBI busts alleged DDoS mafia. Aug. 2004.

http://www.securityfocus.com/news/9411.
[38] V. Sekar, N. Duffield, O. Spatscheck, J. van der Merwe, and

H. Zhang. LADS: Large-scale automated DDoS detection
system. In USENIX Technical Conference, June 2006.

[39] M. Sherr, M. Greenwald, C. A. Gunter, S. Khanna, and S. S.
Venkatesh. Mitigating DoS attack through selective bin
verification. In 1st Wkshp. on Secure Netwk. Protcls., Nov. 2005.

[40] K. K. Singh. Botnets—An introduction, 2006.
http://www-static.cc.gatech.edu/classes/AY2006/cs6262 spring/botnets.ppt.

[41] Spammer-X. Inside the SPAM Cartel. Syngress, 2004. Page 40.
[42] Stupid Google virus/spyware CAPTCHA page.

http://www.spy.org.uk/spyblog/2005/06/stupid google virusspyware cap.html.
[43] TechWeb News. Dutch botnet bigger than expected. Oct. 2005.

http://informationweek.com/story/showArticle.jhtml?articleID=172303265.
[44] The Register. East European gangs in online protection racket.

Nov. 2003.
[45] D. Thomas. Deterrence must be the key to avoiding DDoS

attacks, 2005.
http://www.vnunet.com/computing/analysis/2137395/deterrence-
key-avoiding-ddos-attacks.

[46] R. Vasudevan, Z. M. Mao, O. Spatscheck, and J. van der Merwe.
Reval: A tool for real-time evaluation of DDoS mitigation
strategies. In USENIX Technical Conference, June 2006.

[47] L. von Ahn, M. Blum, and J. Langford. Telling humans and
computers apart automatically. CACM, 47(2), Feb. 2004.

[48] M. Walfish, H. Balakrishnan, D. Karger, and S. Shenker. DoS:
Fighting fire with fire. In HotNets, Nov. 2005.

[49] X. Wang and M. Reiter. Defending against denial-of-service
attacks with puzzle auctions. In IEEE Symp. on Security and
Privacy, May 2003.

[50] A. Yaar, A. Perrig, and D. Song. SIFF: A stateless Internet flow
filter to mitigate DDoS flooding attacks. In IEEE Symp. on
Security and Privacy, May 2004.

[51] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting
network architecture. In SIGCOMM, Aug. 2005.

