1

XSA-strengthening: Strengthening MD5
and Other Iterated Hash Functions Through
Variable-length External Message

Expansion

[CSD Technical Report 08-894, USC, Los Angeles, California, January 2008.]

William C. Cheng Leana Golubchik
Dept. of Computer Science Computer Science, EE-Systems, IMSC
University of Southern California University of Southern California
Los Angeles, California Los Angeles, California
bill.cheng@usc.edu leana@cs.usc.edu
Abstract

In recent years, it has been demonstrated that collisiondeasystematically constructed
for some popular cryptographic hash algorithms, such as MD8 SHA-1. Various ways
of enhancing these hash functions vissage pre-processimgy external message expan-
sion have been proposed to make them resistant to known collisttatks. Message pre-
processing/expansion is a way of creating a new hash funéition an original one. It has the
advantage of being backward-compatible with the origiredthfunction, and therefore, may
extend the useful life of the original hash function.

In this paper, we examine a novel approach to message peegsing/expansion, which we
call eXtremeShrinking ARC4 Strengthen{iog XSA-strengtheningXSA-strengthening based
on the idea of the self-shrinking generator, the ARC4 ciphad MD-strengtheningand can
be applied to anMerkle-Damgrd iterated hash functianXSA-strengtheninig deterministic,
has small space and computational overhead, and can bemtficimplemented. We believe
that it can be a useful tool for strengthening Merkle-Dandggerated hash functions.

Index Terms

Hash functions, MD5, SHA-1, Collisions, External Messaggamsion, Message Pre-
processing

. INTRODUCTION

A cryptographic hash function is a vital component in mangusity products and services
such as digital signatures, authentication servicessviheckers, etc. An important property of a
cryptographic hash function eollision resistanceWith collision resistance, it is computationally
difficult to find two distinct input strings that hash to thenmavalue. The security of some of
these products and services depends on the collisionaessiproperty of the underlying hash
functions.

In recent years, it has been demonstrated (e.g., in [1] apdthat collisions can be sys-
tematically constructed for some popular cryptographishhalgorithms that are based on the
Merkle-Damgrd construction such as MD5 [3] and SHA-1 [4]. Researcher have been seeking
replacements for these “broken” hash functions to be usetutire security products and
services. One approach is to stay with the Merkle-Damgarsicuction design principle and
design new hash functions that are resistant to currentkattaAnother approach is to invent
new hash functions that are not based on the Merkle-Damg@mdtruction. A third approach
is to continue with Merkle-Damgard construction but als® axternal message expansi¢or
message pre-processingy create a new hash function from an existing one. With rexte
message expansion, the original hash function is not dltdmat the input to the original hash
function is modified and/or expanded. Since the originalhh@sction is preserved, external
message expansion has the advantage that it is backwarnghktibfa, and therefore, may extend
the useful life of the original hash function. External naggs expansion is the main focus of this
paper. (For the rest of this paper, we will use the abbremiatiD to stand forMerkle-Damgurd
, except in the context of the MD5 algorithm.)

Please note that the tetmessage expansiariten refers to expanding a message blotide
a hash function. Since our goal is to leave the original hasictfon unaltered, we use the term
external message expansitm mean performing message expansouisidethe original hash
function.

A. External Message Expansion

In Figure 1(a), we illustrate the approach where the originput message is fed directly
to the original hash function to produce a hash value. In feidi(b), we depict theexternal
message expansi@pproach, where blocks are inserted into various placeseobtiginal input
message to create an expanded input message. The expanaaddéssage is fed to thmaltered
original hash function to produce a hash value. In genedlall inserted blocks are equal in
size; furthermore, they do not have to be inserted at regaotarvals.

Original
Original Input Message | | M1 | M, Ms My | o Input
, . B \ Message
External Message Expansion
2 - ! Expanded
(ol v [v [maf] - e
Message
Original Original
Hash Hash
Function Function
(a) Without External Message Expansion (b) With External Message Expansion

Fig. 1. Computing a hash value with or withogxternal message expansion

We can viewMD-strengthening5], [6] as an approach that uses external message expansion
With MD-strengthening, the length of the input message isodrd in aLength blockwhich

is appended to the input message. (Some padding bits ameithdmetween the original input
message and the Length block if necessary.) The expandeshgeeis then fed into the iterated
hash process. With the use of MD-strengthening, it is diffitm create collisions for messages
of different lengths. In a way, MD-strengthening forces #éaker to look for collisions from
messages having the sasteucture It was suggested in [7] that “iterated hash functions sthoul
be used only with MD-strengthening”.

Our basic idea is to create a message-dependmble-length block which we call the
SA block to be appended to the original message. The expanded reeisstgen fed into an
unmodified MD iterated hash function. The SA block is thuseitesd between the original
message and the MD Length block. The length of the SA block fignation of the original
message. We would like the content of the SA block to be hardotatrol in an attack. In
addition, if we can make thkengthof the SA block difficult to control, then MD-strengthening
can help to make it even harder to create collisions. Silgilts many previously proposed
external message expansion techniques, this techniqubecapplied to any MD iterated hash
functions. We call our technigughrinkingARC4-strengthenirfgr SA-strengthening To provide
additional protection, we present a relatively straigiiafard extension tdSA-strengthening
which we calleXtremeShrinkingARC4-strengthenifogy XSA-strengthenirjg The basic idea of
XSA-strengthening to insert additionalzariable-length blockénto the message stream.

In [8], Kauer et al. proposed to expand the input message ing @nother hash function, in
their case, &eyed hash functigno compute dag of the input. Theaagis added at the beginning
and the end of the original input message to produced thenelgaiinput message. The expanded
input message is fed to the original unmodified hash funcfidgre original input message can
also be segmented and the same method can be used with eavénsed drawback of this
approach is that its computational overhead can cause fgssrimrmance.

In [9], Szydlo and Yin proposed three methods. One is caitezssage whiteningvhere
strings of zeroes are inserted into the original input mgesat predetermined positions. The
second method is calladessage self interleavinghere the message is divided into blocks and
duplicates of these blocks are inserted into the originaksage. The third method is called
message duplicatiomwhere the message is concatenated with itself to producetpanded
message. All these methods can be efficiently implementedtasvback of these approaches is
that, in practice, the expanded message length can be aRkE#smore than the input message
and this may slowdown performance.

In an unpublished paper, Fortner proposed to append the &aiables of a mechanism that
permutes the elements of an array in a seemingly random wjyAlthough Fortner's proposal
did not use theARC4 cipher it is similar to our proposal oARC4 Hashdescribed in Section
[I-A. Many of the parameters in Fortner’s proposal, suchhesdize of the array, how to initialize
the array, and initial values of the registers, are left @usjed.

All of the above proposals (and others, such as [11], whidlsicter improvements to hash
functions but do not specifically focus on external messageamsions) only considered inserting
fixed-size blocks into the original input message. WatA-strengtheningwve use the idea of a
self-shrinking generatof12] to produce variable-lengtBhrunkenARC4 block®r SA block¥
to be inserted into the message stredm.the best of our knowledge, there is no existing
work on using message-dependent variable-length exteneslsage expansion to strengthen a
hash functionTo be efficient in calculating the SA block, we use a modifiedG¥Ralgorithm.

Traditionally, the self-shrinking generator and ARC4 [E8E both used in stream ciphers. We
choose them because they have nice security properties enalige they are efficient in both
space and time.

The remainder of this paper is structured as follows. Ini®adt, we presenSA-strengthening
We describe how we modify the ARC4 cipher to be used as a hasttidm and how to
generate a variable-length SA block to expand the input agessSection 11l presents additional
strengthening to our approach callX$SA-strengtheningn Section IV, we give our security
rationale. Section V concludes with a summary and a disoossi

II. SA-STRENGTHENING

Motivated by efficiency, we mainly operate in octets (or egléntly, bytes). If the bit length
of the input message is not a multiple of 8 bits, it is paddethwiero bits to make the bit
length a multiple of 8 bits. We will use thenput [] array to represent the input message where
i nput [0] is the first byte of the input message.

A. ARC4 Hash

We first describe how we modify the ARC4 cipher and make it iathash function. The
internal state for the ARC4 cipher includes an array of 256$ydenoted byg[0. . 255] .
ARC4 also uses two index registeisandj , where registei steps through the array indices
and registef indexes seemingly random element of the array.

ARC4 can be divided into 3 algorithms. Tlitialization algorithminitializes the array to
an incrementing pattern, and it is depicted as follows:

(1) for i fromO to 255
(2 S[i] (=i

The key schedulinglgorithm uses a key array to permute the state array intoeaisgly
random pattern. The key scheduling algorithm is depicte@saudocode as follows, with the
key array denoted biey[0. . (n-1)] wheren denotes the length of the key in bytes:

3) j :=0
E4; {‘or i fromO to 255 do
(5 j =(] + 9[i] + key[i nmod n]) nod 256
(6) swap(S[i],S[j])
(7) end for

The outputalgorithm selects seemingly random elements of the stas&y and outputs their
values. It is depicted as follows:

(8 u:=v:=0

(9) while GeneratingQutput do:

(10) u:=(u+ 1) nod 256

(11) v := (v + S[u]) nod 256

(12) swap(S[u], S[v])

(13) output S[(S[u] + Y[v]) nod 256]

(14) end while

To convert ARC4 into a hash function, we can simply subditiie input message for the
key array. Letn be the length of the input message in bytes. If the length @itlessage is less

than256 bytes, line (5) above may use the input message multiplestifieus, line (5) can be
replaced by line (5a) below:

(5a) j :=() + 9[i] +input[i nod n]) nod 256

If the length of the message is greater than or equast bytes, we replace lines (4) and
(5) above with lines (4a), (4b), and (5b) below:

(3 j:=0

(4a) for x fromO to n-1 do

(4b) i = x nmod 256

(5b) j 1= (] + 8[i] + input[x]) nmod 256
(6) swap(S[i],S[j])

(7) end for

We require that for a non-null message whose length is less256 bytes, the input message
is repeatedly fed to the original hash function ugtib bytes are sent. This is similar tnessage
duplicationdescribed in [9]. But unlike [9], we do not restrict the inpuessage to be repeated
at most twice. Although it has been shown that feeding thatimpessage multiple times may
not increase the strength of the hash function substanf{itdl], it is done here to ensure that
every element of the state array has been moved. We will tefihis as theMessage Self-Repeat
(or MSR requirement.

Another modification we make is to use a slightly differentiaization algorithm, in order
to make the initial pattern in the state array more difficaltniodel in an attack. We arbitrarily
choose to initialize the state array to the values of the AES0S[15]. The AES S-box is
depicted next:

63| 7c | 77| 7Tb | f2 | 6b | 6f | c5 | 30| 01| 67 | 2b| fe | d7 | ab | 76
ca|82|co|7d|fa|59|47 | f0 | ad| dd | a2 | af | 9c | a4 | 72 | cO
b7 | fd | 93| 26 | 36 | 3f | f7 | cc | 34| a5 | e5 | f1L | 71| d8 | 31| 15
04 | c7 | 23| c3|18| 9| 05| 9| 07| 12|80 | e2| eb| 27| b2 | 75
09 | 83| 2c|l1a|1lb| 6e| 5a| a0 | 52| 3b| d6 | b3 | 29| e3| 2f | 84
53| dl | 00| ed| 20| fc [b1 | 5b| 6a| cb| be| 39| 4a| 4c | 58 | cf
do | ef | aa| fb | 43| 4d | 33| 85| 45| f9 | 02 | 7f | 50 | 3c | of | a8
51| a3 | 40| 8f [92| 9d | 38| f5 | bc | b6 | da | 21 | 10 | ff f3 | d2
cd | Oc| 13| ec | 5f | 97 | 44| 17 | c4 | a7 | 7e | 3d | 64 | 5d | 19 | 73
60 | 81| 4f | dc | 22| 2a| 90| 88| 46 | ee | b8 | 14 | de | 5e | Ob | db
e0 [32| 3a|0a|49 | 06|24 | 5c|c2|d3|ac| 62| 91| 95| ed| 79
e7 | c8 |37 |6d| 8| d5| 4e | a9 | 6c | 56 | f4 | ea| 65| 7a | ae | 08
ba| 78| 25| 2e | 1c | a6 | b4 | c6 | e8| dd | 74 | 1f | 4b | bd | 8b | 8a
70 | 3e | b5 | 66 | 48| 03 | f6 | Oe | 61 | 35 | 57 | b9 | 86 | c1 | 1d | 9e
el | f8 | 98| 11| 69| d9| 8 | 94| 9 | 1le | 87 | e9 | ce | 55 | 28 | df
8c|al| 8| 0d| bf | e6| 42| 68| 41| 99 | 2d | Of | bO| 54 | bb | 16

Letsbox[0. . 255] be the array that holds the values of the AES S-box,slgox[0] =0x63,

sbox[1] =0x7c, ..., sbox[255] =0x16. The updated initialization algorithm is then as follows:
(1) for i fromO to 255
(2a) S[i] := sbox[i]

We now assume the use of the updated initialization and Kegdding algorithm (with (2a),
(4a), (4b), (5a), and (5b)). Then, after we have exhaustedrihut, we can simply output the
state array sequentially as the hash value. (We do not needRC4 output algorithm here.)
The hash value is always 256 bytes in length. We will refethie algorithm as théARC4 hash
algorithm and to the hash it produces as thRC4 hastof the input message.

The ARC4 hash algorithm described here is fast and takestartn@nd small) amount of
space to execute. Bittis not a good cryptographic hash algorithror instance, if two input
messages differ only in the last byte, their ARC4 hashesdiffer by at most three bytes. In
addition, in the case of very short messages, the correapp®RC4 hashes can be similar.
Yet it may still be useful in strengthening the original hdshction, if it is used to expand the
input message. (Recall that with MD-strengthening, thetlerblock is a very simple function
of the input message. Yet it has utility in guarding agaimshs collision attacks.)

Given the above algorithm, the size of an ARC4 hash is fixetbvBeve show how to make
it into a variable-length hash.

B. Shrunken ARC4 Hash

Leta[0..(n-1)] be an array of bytes whereis an even number. Let thearity of a byte
be the bit-wise XOR of all the bits in the byte. (To calculdte parity of a byte efficiently, a
lookup table can be used.) Lebri nk(a) be defined by the following pseudocode:

(15) i := 0
(16) while i < n do
(17) if parity(a[i]) =1
(18) out put afi +1]
(19) i =i o+ 2
(20) end while
In the above procedure, we will refer & 0] , a[2], ..., a[n- 2] asparity bytes If the parity

of a parity byte is odd, the following byte is included in thetput. Otherwise, the following
byte is not included in the output.

If a is an ARC4 hash, we will refer tehri nk(a) as ashrunken ARC4 hasiThe length
of a shrunken ARC4 hash may range fr@no 128 bytes. If two ARC4 hashes differ in only
two bytes, then there is a reasonably high probability thatrtshrunken hashes are identical.
If we use aparity accumulator we may lessen this problem. Tiparity accumulatoris a byte
corresponding to the byte-XOR of all the previous bytes vehparity has been examined. Its
initial value is set to zero. Instead of evaluating the paoit the current byte, we evaluate the
byte-XOR value of the current byte and the parity accumuldtet the variablepacc be the
parity accumulator; we modifghri nk(a) to be the following:

(15) i :=0

(16) while i < n do

(16a) pacc := pacc XOR a[i]
(17a) if parity(pacc) =1
(18) out put afi +1]
(19) i =0 o+ 2

(20) end while

We usesah(m) to denote theshrunken ARC4 hastf an input message:. Please note that a
shrunken ARC4 hashk a function of the input messagaly. It does not depend on the original
hash function. It is clear that if two input messages havatidal ARC4 hash values, their
shrunken ARC4 hash values will also be identical since ogor>hm is deterministic

C. SA-strengthening

Let m be an input message. Letsr(m) be equal tom if m is the null message or if the
length ofm is greater than or equal @256 bytes. Otherwisemsr(m) is obtained by repeating
m as many times as necessary to ##6 bytes.

For an MD iterated hash functignand an input message, the ShrinkingARC4-strengthening
(or SA-strengtheningof & is defined as a hash functignwith g(m) = h(msr(m)||sah(m)),
where|| denotes concatenation. It should be clear that this apprisasuitable for processing
streaming datd9].

D. Test Vectors

We now give some examples. Tearunken ARC4 hastor a null input message is 60 bytes
long; it has the following hexstring representation:

6bc501d7d4ccf 1d8c7121a6ealOb384dled4cef f bf 9a39db6f f d2ec97175ddc2a
88db065c9579c8ea7a78a6¢c6ddlf bhd8a66030eb911d99455df 0d5416

Let SAMDS5 denote th&A-strengtheneldlD5. Then the SAMDS5 hash of a null input message
is the MD5 hash of the above shrunken ARC4 hash. Therefoeeotitput is:

765f f aac6f a64bd6f 49f 9d715f 1168e7

Let SASHA1 denote the&sA-strengthene®@HAL. Then the SASHAL hash of a null input
message is the SHAL hash of the above shrunken ARC4 haslefdtegrthe output is:

3cf 2e441e0e25e014355e845827acf af 99b344d5

If the parity accumulatoris not used, then thehrunken ARC4 hasfor a null input message
is 63 bytes long, and it has the following hexstring represeoiati

6b2bd776d4af ccabf 115¢c7¢c312e21a3bb3e384f c4ccf ef 4df 97f a38f 9df 5b621
ffOceca75d73dceedb3206d3956dea08782ea63e6635b9c1111e55a10de654

Suppose now that a 16-byte input message has the followirstrire representation:
000102030405060708090a0b0c0d0e0f

Since the length of this input messagelébytes (which is less thakb6 bytes), it must be
fed repeatedly (i.e.16 times) to the underlying hash function. k&runken ARC4 hasis 66
bytes long with the following hexstring representation:

a3ac9f 867e6365c98ec76bbc5d82d86f a295e7390629343cc5a1e8684b0c0027
cdce357dbeaee025f c5b4f 18791a8ddf 53aa7c¢1913613a241236f 53774a81f 16
891d

Its SAMD5 hash value is:
3ade8f 6d7c5adb8dbb7abbad07d8dd4c

Its SASHA1 hash value is:
4216c¢58a620b84ad952e8a5bf 37¢cb63937920840

E. Notes on Shrunken ARC4 Hash Statistics

Given a collection of random input messages, a desirablpepty is that the distribution of
the length of a shrunken ARC4 hash has a meafidiytes. We have generated a large number
of random input messages of various lengths, and our expatsrindicate that this is indeed
the case.

F. Parameterization

For SA-strengtheningsome variations are possible. For example, (1) not usiegptrity
accumulator (2) using a different algorithm to initialize the state ayr(instead of using the
AES S-box), (3) no padding (this includes not using messafferepeat for short messages),
(4) always padding the message with bytes of zeroes so thaenigth of the padded message is
a multiple of256 bytes (not usingnessage self-repe&dr short messages), (5) always padding
first with one non-zero byte (e.g0x80), and then adding as few bytes of zeroes as needed so
that the length of the padded message is a multipl256fbytes, and (6) instead of outputting
the state array sequentially as the ARC4 hash value, use R@&4/output algorithm to “clock
out” some fixed number of bytes. However, we do not recommendad the above options
and suggest thabA-strengtheninghould be used without any parameters. The reasons are as
follows.

1) No parity accumulatorThe use of the parity accumulator extends the state of the SA
engine by 8 bits. This increases the complexity of the SA msgind makes the SA
engine more difficult to model.

2) Different initial state.The AES S-box is arbitrarily chosen as the initial state & #tate
array in the SA engine. At the time of this writing, there does appear to be an advantage
to using a different initial state.

3) No padding.The disadvantage of this approach is thdRC4 hashe®f short messages
with the same prefix can be very similar.

4) Pad with zeroes to multiple @66 bytes.The main advantage of this approach is simplicity.
However, a disadvantage is that for short messages, paddihgzeroes may be less
effective in mixing the state array as compared to paddir tie message itself.

5) Pad with0x80 followed by zeroes to multiple @66 bytes.The advantage of this approach
is that the padded message is unique. But, uniqueness iequited (as in the case of
MD-strengthening). The disadvantage is that a totaR@d bytes will be added if the
length of the original input message is a multiple26t; bytes. This overhead may not be
desirable.

6) Use the ARC4 output algorithm to generate the ARC4 hash v@headvantage of using
the ARC4 output algorithm is that (a) we can reduce the sizian®@fARC4 hash to speed
up the hash computation, and (b) we can fine-tune the numbgytes in the ARC4 hash.
But this can be viewed as a disadvantage since we do not knavwntany bytes to output.
Simply outputting the state array as the ARC4 hash has thargalges of simplicity and
that it gives additional structure in the expanded messsigee the state array is always
a permutation of the values,through255.

1. XSA-STRENGTHENING

SA-strengthenings similar to MD-strengtheningn that (a) each method produces a block
to be appended to the input message, and (b) the expandedgedsded to the iterated hash
function. As proposed in [8] and [9], additional blocks camihserted at various places of the
input message to provide additional strengthening. Sitgjlave propose a way of extending
SA-strengthening by insertingariable-length blocksat fixed positions of the input message,
to provide additional protection. We call thisXtremeShrinkingARCA4-strengthenif@ XSA-
strengtheniny

The basic idea is quite simple. For evey6 bytes of the original input message, inseror
fewer bytes (and! bytes on the average) based on the state of the modified AR IciWe
refer to these added bytes asise byteslf the length of the input message is not a multiple
of 256 bytes, nonoise bytesire appended at the end. After the whole input message is aead
shrunken ARC4 hask appended at the end. (In general, we can insert Ug twise bytes for
every 2K bytes of the original input message. The following discmisss limited to the case
where K = 8.)

The noise bytecan be obtained by selectiri@ bytes from the state array and applying the
shrinking algorithm described in Section 1I-B withbeing16. The16 bytes can come from fixed
locations of the state array. But we chose to basically usendifrad ARC4 output algorithm
to “clock out” 16 bytes as follows (withr being 16).

(10a) for i fromO to (r-1) do

(1) u:=(u+ 1) nod 256

(12) v := (v + S[u]) nod 256

(13) swap(S[u], S[v])

(14) output S[(S[u] + §[v]) nod 256]

(15a) end for

Please note that variablesandv are now globally persistent variables (and no longer local
to the output algorithm). Therefore, we need to modify thidlization algorithm as below:
(0 wuu:=v:=pacc :=0
(1) for i fromO to 255
(2a) S[i] := sbox[i]

Please also note that tiparity accumulatoiis a globally persistent variable as well. It carries
the XOR’ed values of all examined parity bytes.

A. Taking Care of Short Messages

Since nonoise bytewill be inserted for an input message whose length is led2fitabytes,
short input messages may be more vulnerable to attackswBeédescribe a way of inserting
noise bytesnto short messages.

The basic idea here is also quite simple, and it only apptiegbe first128 bytes of the input
message. After reading a total ®f bytes from the input, wheré > 1 andk < 7, insert at
most .k bytes into the message. (In the general setting describedeab < k < K — 1.) The
modified ARC4 output algorithm described above can be usédmwbeing 2k.

10

Please note that if the length of the input message is lessi?tabytes, the input message
must be repeated and expanded to conform tontkessage self-repeagquirement described in
Section II-A.

Since we do not want to rely on knowing the length of an inpussage (in order to satisfy the
streaming data requirement), we will carry out the opergjitst described during the processing
of the first 128 bytes of input data for all messages.

B. Test Vectors

For a null message, naoise bytexan be added. In this cas¢SA-strengthenellD iterated
hash function outputs the same hash value as a correspoBdistyengthenelD iterated hash
function.

Given a 16-bytes input message with the following hexstriygresentation:

000102030405060708090a0b0c0d0eOf
We tabulate thenoise bytesand shrunken noise bytdselow for all values ofk. The shrunken

noise bytesare fed to the original hash function after th&th bytes of the input message are
fed to the original hash function.

k T noise bytes (hexstring) shrunken noise bytes (hexstring)
1| 573b 3b

2 | 11122183 1283

3 | b3578a6c75ce 6C

4 | 8de9aca7c712d0b8 12

5 | e7c¢73d5a9b46af389270 5a70

6 | d633d8a08f34b9f8ddcOle6c 34

7 | a41275ee14771d020019af138c97 1297

8 | 8145a1ab977b17f8c0302caldd4d65phi57bf830

In this case, theshrunken ARC4 hask 59 bytes long with the following hexstring represen-
tation:

cac3dac89148f ca558al16f 4abh914h8e43489h2a345282082d83918864ce10299
dda4bd29f 2aae89f 55¢0212bf 04d7210f 643f 8bc61df 9b4f 966009

Thus, the original hash function is fed the following date.(ithe expanded input message):

00013b02031283040506076c08090a0b0c0d0e0f 12
000102030405060708090a0b0c0d0e0f 5a70
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0e0f 34
000102030405060708090a0b0c0d0eOf
000102030405060708090a0b0c0d0eOf
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0e0f 1297
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0eOf
000102030405060708090a0b0c0d0eOf
000102030405060708090a0b0c0d0eOf
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0e0f 457bf 830
cac3dac89148f ca558al16f 4abh914h8e43489h2a345282082d83918864ce10299

11

dda4bd29f 2aae89f 55¢0212bf 04d7210f 643f 8bc61df 9b4f 966009

Let XSAMD5 denote theXSA-strengtheneMID5. For the above 16-byte input message, its
XSAMDS5 hash value is as follows:

24b6f 1abc59ab1de11999896f f 4d2ea?2

Let XSASHAL denote thXSA-strengthene8HAL. For the above 16-byte input message, its
XSASHAL hash value is as follows:

72e87eef f 307b8991e7d2b0282d361268dd83b78

C. Parameterization

XSA-strengtheningnly has one parametefs, which was introduced at the beginning of
Section Ill. By default,K is 8 and it corresponds to the internal table size of the ARC4rengi
used. For a long message, excluding for the fifgt-byte block and the last block, the average
overhead ist bytes of inserted data for eveBh6 bytes of input datal(6% overhead). The
first 256-byte block has an expected overhead36fbytes, and the last block has an expected
overhead of64 bytes. For a very short message (less tRaf bytes in length), there is a
fixed overhead ol 00 bytes on the average. If it is desirable to have smaller @asttfor long
messages, a largéf can be usedK < 8 is not recommended because it will result in output
being performed before the internal states have gone thraufyll permutation cycle.

IV. SECURITY RATIONALE

With external message expansjaan expanded input message is created from the original
input message by introducing redundant information inte thessage stream. The redundant
information creates dependencies among bits in the explamgrit message. In a way, the
redundant information createsdructurein the expanded input message. This is similar to the
way MD-strengthening creates structure in the expandedtinfessage. WittsA-strengthening
andXSA-strengtheningnore and more structure is introduced into the expandeat imgssage.

In [9], Szydlo and Yin showed that external message expan@itessage pre-processing)
can mitigate all known collision attacks for the approactiesy proposed. We think that the
same argument can be made for SA-strengthening and XSAgsitrening, although we have not
done the analysis to date (SA-strengthening and XSA-stineming appear to be more difficult
to analyze due to the complexity of the ARC4 cipher and thégswlnking property of the
output.)

Since message-dependent variable-length external messggansion is a new technique,
further carefully examination must be performed beforeaih de used widely.

V. CONCLUSIONS

In this paper we presented a novel method for external messggansion in order to create
drop-in replacements of MD5 and other iterated hash funstidhe original hash functions are
unaltered. We called our methaaXtremeShrinkingARCA4-strengtheniog XSA-strengthening
In XSA-strengtheningwe modified theARC4 stream cipheto be used as a hash function
and a byte stream generator. We then used the ideasaffashrinking generatoto generate

12

message-dependent variable-lenggtiise byte$o be inserted into the original input message and

a message-dependent variable-length block to be appeadied original input message to form

an expanded message. We uspagity accumulatorto create additional dependencies among

the inserted data. For short messages, wenusssage self-repeédr additional protection.
XSA-strengtheningas many attractive properties:

« it can be applied to any MD iterated hash function

« the underlying hash function is kept unaltered

« it is deterministic and simple to understand

« it has a fixed memory footprint and supports streaming data

« it has small computational overhead

« for a large input message, it expands the input message byakh amount

One disadvantage of XSA-strengthening is that for shomiinpessages (less thaa6 bytes in
length), it expands the input message by at léastbytes, on the average.
XSA-strengthening not intended to be a replacement of a well-designed cgypfihic hash
function. However, we think that it can be a practical toal $trengthening and increasing the
useful lifetime of an MD iterated hash function. Since XStfeagthening only expands the input
message externally, potentially it may be useful for non-kddated hash functions as well.

REFERENCES

[1] X. Wang and H. Yu, “How to break MD5 and other hash functigiin Advances in Cryptology, EUROCRYPT, 05
R. Cramer, Ed. Springer-Verlag, 2005, pp. 19-35.
[2] X. Wang, Y. Yin, and H. Yu, “Finding collisions in the fulBHA-1,” in Advances in Cryptology, CRYPTQ’05
V. Shoup, Ed. Springer-Verlag, 2005, pp. 18-36.
[38] R. Rivest,RFC 1321: The MD5 Message-Digest Algorithinttp://www.ietf.org/rfc/rfc1321.txt.
[4] D. Eastlake and P. JoneRFC 3174: US Secure Hash Algorithm 1 (SHAHfp://www.ietf.org/rfc/rfc3174.txt.
[5] I. Damgard, “A design principle for hash functions,” Advances in Cryptology, CRYPTO:8%pringer-Verlag,
1989, pp. 416-427.
[6] R. C. Merkle, “One way hash functions and des,”Advances in Cryptology, CRYPTO89Springer-Verlag,
1989, pp. 428-446.
[7] X. Lai and J. Massey, “Hahs functions based on block adiphén Advances in Cryptology, EUROCRYPT.92
Springer-Verlag, 1992.
[8] N.Kauer, T. Suarez, and Y. Zheng, “Enhancing the MD+ggtbening and designing scalable families of one-way
hash algorithms,” irR005 Cryptographic Hash Worksho@aithersburg, Maryland, October-November 2005.
[9] M. Szydlo and Y. Yin, “Collision-resistant usage of MDS & SHA-1 via message preprocessing,” 2005
Cryptographic Hash Workshogaithersburg, Maryland, October-November 2005.
[10] J. Fortner,A Method for Pre-Processing Message Digest Outfunpublished, see
http://csrc.nist.gov/pki/lHashWorkshop/2006/prograf06.htm#unaccepted).
[11] J. Coron, Y. Dodis, C. Malinaud, and P. Puniya, “Merkl@ngard revisited : How to construct a hash function,”
in Advances in Cryptology, CRYPTO:05Springer-Verlag, 2005.
[12] W. Meier and O. Staffelbach, “The self-shrinking geater,” in Advances in Cryptology, EUROCRYPT,94
A. de Santis, Ed. Springer-Verlag, 1994, pp. 205-214.
[13] K. Kaukonen and R. ThayerA Stream Cipher Encryption AlgorithnArcfour, IETF Internet Draft,
http://tools.ietf.org/html/draft-kaukonen-cipheréour-03, 1999.
[14] J. Hoch and A. Shamir, “Breaking the ICE - finding multicsions in iterated concatenated and expanded (ICE)
hash functions,” inFast Software Encryption 2006&raz, Austria, March 2006.
[15] NIST, Announcing the Advanced Encryption Standard (AE®S 197, 2001.

