1

XSA-strengthening: Strengthening MD5
and Other Iterated Hash Functions Through
Variable-length External Message

Expansion

[Rev. 1, CSD Tech. Report 08-894, USC, Los Angeles, California, Sep. 2008.]

William C. Cheng Leana Golubchik
Dept. of Computer Science Computer Science, EE-Systems, IMSC
University of Southern California University of Southern California
Los Angeles, California Los Angeles, California
bill.cheng@usc.edu leana@cs.usc.edu
Abstract

In recent years, it has been demonstrated that collisiondeasystematically constructed
for some popular cryptographic hash algorithms, such as Mb& SHA-1. Various ways
of enhancing these hash functions vigssage pre-processimgy external message expan-
sion have been proposed to make them resistant to known collsitatks. Message pre-
processing/expansion is a way of creating a new hash funfition an original one. It has the
advantage of being backward-compatible with the origiredthfunction, and therefore, may
extend the useful life of the original hash function.

In this paper, we examine a novel approach to message peegsiag/expansion, which we
call eXtremeShrinking ARC4 Strengthen{iog XSA-strengtheningXSA-strengthening based
on the idea of the self-shrinking generator, the ARC4 ciphad MD-strengtheningand can
be applied to anMerkle-Damgrd iterated hash functianXSA-strengthening deterministic,
has small space and computational overhead, and can bemtficimplemented. We believe
that it can be a useful tool for strengthening Merkle-Dardgéerated hash functions.

Index Terms

Hash functions, MD5, SHA-1, Collisions, External Messaggansion, Message Pre-
processing

. INTRODUCTION

A cryptographic hash function is a vital component in mangusigy products and services
such as digital signatures, authentication servicesswheckers, etc. An important property of a
cryptographic hash function eollision resistanceWith collision resistance, it is computationally
difficult to find two distinct input strings that hash to thensavalue. The security of some of
these products and services depends on the collisionaesesproperty of the underlying hash
functions.

In recent years, it has been demonstrated (e.g., in [1] apdtfat collisions can be sys-
tematically constructed for some popular cryptographishhalgorithms that are based on the
Merkle-Damgrd construction such as MD5 [3] and SHA-1 [4]. Researcher have been seeking
replacements for these “broken” hash functions to be usefltire security products and
services. One approach is to stay with the Merkle-Damgartsituction design principle and
design new hash functions that are resistant to currentkattadnother approach is to invent
new hash functions that are not based on the Merkle-Damgmdtruction. A third approach
is to continue with Merkle-Damgard construction but als® external message expansi¢or
message pre-processingp create a new hash function from an existing one. With rexie
message expansion, the original hash function is not dltdnat the input to the original hash
function is modified and/or expanded. Since the originahht@asction is preserved, external
message expansion has the advantage that it is backwanghktibia, and therefore, may extend
the useful life of the original hash function. External maggs expansion is the main focus of this
paper. (For the rest of this paper, we will use the abbrend¥iD to stand forMerkle-Damgurd
, except in the context of the MD5 algorithm.)

Please note that the termessage expansiariten refers to expanding a message bloahde
a hash function. Since our goal is to leave the original hasltion unaltered, we use the term
external message expansitm mean performing message expansoutsidethe original hash
function.

A. External Message Expansion

In Figure 1(a), we illustrate the approach where the originaut message is fed directly
to the original hash function to produce a hash value. In fiéigi(b), we depict thexternal
message expansi@pproach, where blocks are inserted into various placeseobtiginal input
message to create an expanded input message. The expanatadéssage is fed to thmaltered
original hash function to produce a hash value. In geneddlaii inserted blocks are equal in
size; furthermore, they do not have to be inserted at reguatarvals.

Original
Original Input Message | | M1 | M, Ms My | o= Input
, . B \ Message
External Message Expansion
2 - ! Expanded
[T TP P T 7
Message
Original Original
Hash Hash
Function Function
(a) Without External Message Expansion (b) With External Message Expansion

Fig. 1. Computing a hash value with or withogexternal message expansion

We can viewMD-strengthenind5], [6] as an approach that uses external message expansion
With MD-strengthening, the length of the input message isodrd in aLength blockwhich

is appended to the input message. (Some padding bits amteithdretween the original input
message and the Length block if necessary.) The expandeshgees then fed into the iterated
hash process. With the use of MD-strengthening, it is diffitmicreate collisions for messages
of different lengths. In a way, MD-strengthening forces #@acker to look for collisions from
messages having the sasteucture It was suggested in [7] that “iterated hash functions sthoul
be used only with MD-strengthening”.

Our basic idea is to create a message-dependaidble-length block which we call the
SA block to be appended to the original message. The expanded reeisstgen fed into an
unmodified MD iterated hash function. The SA block is thusentsd between the original
message and the MD Length block. The length of the SA block fignation of the original
message. We would like the content of the SA block to be hardotarol in an attack. In
addition, if we can make thkengthof the SA block difficult to control, then MD-strengthening
can help to make it even harder to create collisions. Sifyilex many previously proposed
external message expansion techniques, this techniqubecapplied to any MD iterated hash
functions. We call our technigughrinkingARC4-strengthenirfgr SA-strengthening To provide
additional protection, we present a relatively straigiafard extension td&SA-strengthening
which we calleXtremeShrinkingARC4-strengthenifog XSA-strengthenirjg The basic idea of
XSA-strengthening to insert additionaVvariable-length blockénto the message stream.

In [8], Kauer et al. proposed to expand the input message ing @nother hash function, in
their case, &eyed hash functigno compute dag of the input. Theaag is added at the beginning
and the end of the original input message to produced thenegabinput message. The expanded
input message is fed to the original unmodified hash funcfidre original input message can
also be segmented and the same method can be used with eastnsed drawback of this
approach is that its computational overhead can cause fgssrimrmance.

In [9], Szydlo and Yin proposed three methods. One is cattezbsage whiteningvhere
strings of zeroes are inserted into the original input mgssa#t predetermined positions. The
second method is calladessage self interleavinghere the message is divided into blocks and
duplicates of these blocks are inserted into the originatsage. The third method is called
message duplicatiomwhere the message is concatenated with itself to producetpanded
message. All these methods can be efficiently implementedtatvback of these approaches is
that, in practice, the expanded message length can be aRE#smore than the input message
and this may slowdown performance.

In an unpublished paper, Fortner proposed to append thee wabbles of a mechanism that
permutes the elements of an array in a seemingly random vidyAdthough Fortner’s proposal
did not use theARC4 cipher it is similar to our proposal oARC4 Hashdescribed in Section
[I-A. Many of the parameters in Fortner’s proposal, suchhassize of the array, how to initialize
the array, and initial values of the registers, are left ec#jed.

All of the above proposals (and others, such as [11], whialsicter improvements to hash
functions but do not specifically focus on external messageamsions) only considered inserting
fixed-size blocks into the original input message. WitA-strengtheningwe use the idea of a
self-shrinking generatof12] to produce variable-lengtBhrunkenARC4 block®r SA block¥
to be inserted into the message stredim.the best of our knowledge, there is no existing
work on using message-dependent variable-length exteneslsage expansion to strengthen a
hash functionTo be efficient in calculating the SA block, we use a modifiedG¥Ralgorithm.

Traditionally, the self-shrinking generator and ARC4 [E3¢ both used in stream ciphers. We
choose them because they have nice security propertieseradise they are efficient in both
space and time.

The remainder of this paper is structured as follows. IniSadt, we presenBA-strengthening
We describe how we modify the ARC4 cipher to be used as a hasttidm and how to
generate a variable-length SA block to expand the input agessSection Ill presents additional
strengthening to our approach callX$A-strengtheningn Section IV, we give our security
rationale. Section V concludes with a summary and a disoenssi

II. SA-STRENGTHENING

Motivated by efficiency, we mainly operate in octets (or egléntly, bytes). If the bit length
of the input message is not a multiple of 8 bits, it is paddethwiero bits to make the bit
length a multiple of 8 bits. We will use thenput [] array to represent the input message where
i nput [0] is the first byte of the input message.

A. ARC4 Hash

We first describe how we modify the ARC4 cipher and make it iatbash function. The
internal state for the ARC4 cipher includes an array of 256$yenoted byg[0. . 255] .
ARC4 also uses two index registersandj , where register steps through the array indices
and registef indexes seemingly random element of the array.

ARCA4 can be divided into 3 algorithms. Thtialization algorithm initializes the array to
an incrementing pattern, and it is depicted as follows:

(1) for i fromO to 255
(2 S[i] :=

The key schedulinglgorithm uses a key array to permute the state array intoemisgly
random pattern. The key scheduling algorithm is depictegsaeudocode as follows, with the
key array denoted biey[0. . (n-1)] wheren denotes the length of the key in bytes:

3) j :=0
E 4; #or i fromO to 255 do
(5 j = (] + 9[i] + key[i nmod n]) nod 256
(6) swap(S[i],S[j])
(7) end for

The outputalgorithm selects seemingly random elements of the staéy and outputs their
values. It is depicted as follows:

(8 u:=v:=0

(9) while GeneratingQutput do:

(10) u:=(u+ 1) nod 256

(11) v := (v + S[u]) nod 256

(12) swap(S[u], S[v])

(13) output S[(S[u] + Y[v]) nod 256]

(14) end while

To convert ARC4 into a hash function, we can simply subditine input message for the
key array. Lein be the length of the input message in bytes. If the length @itlessage is less

than256 bytes, line (5) above may use the input message multiplestifius, line (5) can be
replaced by line (5a) below:

(5a) j :=() + 9[i] +input[i nod n]) nod 256

If the length of the message is greater than or equabtbbytes, we replace lines (4) and
(5) above with lines (4a), (4b), and (5b) below:

(3 j:=0

(4a) for x fromO to n-1 do

(4b) i = x nmod 256

(5b) j 1= (] + 8[i] + input[x]) nmod 256
(6) swap(S[i],S[j])

(7) end for

We require that for a non-null message whose length is less266 bytes, the input message
is repeatedly fed to the original hash function uiib bytes are sent. This is similar tnessage
duplicationdescribed in [9]. But unlike [9], we do not restrict the inpuessage to be repeated
at most twice. Although it has been shown that feeding thatimpessage multiple times may
not increase the strength of the hash function substanf{itdl], it is done here to ensure that
every element of the state array has been moved. We will tefibis as theMessage Self-Repeat
(or MSR requirement.

Another modification we make is to use a slightly differeritiaization algorithm, in order
to make the initial pattern in the state array more difficalintodel in an attack. We arbitrarily
choose to initialize the state array to the values of the AESS[15]. The AES S-box is
depicted next:

63| 7c | 77| 7Tb | f2 | 6b | 6f | c5 | 30| 01| 67 | 2b| fe | d7 | ab | 76
ca|82|co|7d|fa|59|47 | f0 | ad| dd | a2 | af | 9c | a4 | 72 | cO
b7 | fd | 93| 26 | 36 | 3f | f7 | cc | 34| a5 | e5 | fL | 71| d8 | 31| 15
04 | c7 | 23| c3|18| 96| 05| 9| 07| 12|80 | e2| eb| 27| b2 | 75
09| 8| 2c|l1a|1lb| 6e| 5a| a0 | 52| 3b| d6 | b3 | 29| e3| 2f | 84
53| dl | 00| ed| 20| fc [b1 | 5b| 6a| cb| be| 39| 4a| 4c | 58 | cf
do | ef | aa| fb | 43| 4d | 33| 85| 45| f9 | 02 | 7f | 50 | 3c | of | a8
51| a3 | 40| 8f [92| 9d | 38| f5 | bc | b6 | da | 21 | 10 | ff f3 | d2
cd | Oc| 13| ec | 5f | 97 | 44| 17 | c4 | a7 | 7e | 3d | 64 | 5d | 19 | 73
60 | 81| 4f | dc | 22| 2a| 90| 88| 46 | ee | b8 | 14 | de | 5e | Ob | db
e0 | 32| 3a|0a|49 | 06|24 | 5c|c2|d3|ac| 62| 91| 95| ed| 79
e7 | c8 | 37| 6d|8d|d5| 4e | a9 | 6¢c | 56| f4 | ea| 65| 7a | ae | 08
ba| 78| 25| 2e | 1c | a6 | b4 | c6 | e8| dd | 74 | 1f | 4b | bd | 8b | 8a
70 | 3e | b5 | 66 | 48| 03 | f6 | Oe | 61 | 35 | 57 | b9 | 86 | c1 | 1d | 9e
el | f8 | 98| 11| 69| d9| 8 | 94| 9 | 1e | 87 | e9 | ce | 55 | 28 | df
8c|al| 8| 0d| bf | e6| 42| 68| 41| 99| 2d | Of | bO| 54 | bb | 16

Letsbox[0. . 255] be the array that holds the values of the AES S-box,dleox[0] =0x63,

sbox[1] =0x7c, ..., sbox[255] =0x16. The updated initialization algorithm is then as follows:
(1) for i fromO to 255
(2a) S[i] := sbox[i]

We now assume the use of the updated initialization and Kegdding algorithm (with (2a),
(4a), (4b), (5a), and (5b)). Then, after we have exhaustednihut, we can simply output the
state array sequentially as the hash value. (We do not neeARIC4 output algorithm here.)
The hash value is always 256 bytes in length. We will refeis &lgorithm as thé\RC4 hash
algorithm and to the hash it produces as thRC4 haslof the input message.

The ARC4 hash algorithm described here is fast and takegamn@nd small) amount of
space to execute. Bittis not a good cryptographic hash algorithror instance, if two input
messages differ only in the last byte, their ARC4 hashesdifler by at most three bytes. In
addition, in the case of very short messages, the correspp@RC4 hashes can be similar.
Yet it may still be useful in strengthening the original hdshction, if it is used to expand the
input message. (Recall that with MD-strengthening, thetierblock is a very simple function
of the input message. Yet it has utility in guarding agaimshs collision attacks.)

Given the above algorithm, the size of an ARC4 hash is fixetbvdeve show how to make
it into a variable-length hash.

B. Shrunken ARC4 Hash

Leta[0..(n-1)] be an array of bytes whereis an even number. Let thearity of a byte
be the bit-wise XOR of all the bits in the byte. (To calculdte parity of a byte efficiently, a
lookup table can be used.) Lebri nk(a) be defined by the following pseudocode:

(15) i := 0
(16) while i < n do
(17) if parity(a[i]) =1
(18) out put afi +1]
(19) i =i o+ 2
(20) end while
In the above procedure, we will refer & 0] , a[2], ..., a[n- 2] asparity bytes If the parity

of a parity byte is odd, the following byte is included in thetput. Otherwise, the following
byte is not included in the output.

If a is an ARC4 hash, we will refer tehri nk(a) as ashrunken ARC4 hasiThe length
of a shrunken ARC4 hash may range fronio 128 bytes. If two ARC4 hashes differ in only
two bytes, then there is a reasonably high probability thairtshrunken hashes are identical.
If we use aparity accumulator we may lessen this problem. Tiparity accumulatoris a byte
corresponding to the byte-XOR of all the previous bytes wehparity has been examined. Its
initial value is set to zero. Instead of evaluating the paoit the current byte, we evaluate the
byte-XOR value of the current byte and the parity accumuldtet the variablepacc be the
parity accumulator; we modifghri nk(a) to be the following:

(15) i :=0

(16) while i < n do

(16a) pacc : = pacc XOR a[i]
(17a) if parity(pacc) =1
(18) out put afi +1]
(19) =0 o+ 2

(20) end while

We usesah(m) to denote theshrunken ARC4 hastf an input message:. Please note that a
shrunken ARC4 hashk a function of the input messagaly. It does not depend on the original
hash function. It is clear that if two input messages havatidal ARC4 hash values, their
shrunken ARC4 hash values will also be identical since ogorthm is deterministic

C. SA-strengthening

Let m be an input message. Letsr(m) be equal tom if m is the null message or if the
length ofm is greater than or equal 256 bytes. Otherwisemsr(m) is obtained by repeating
m as many times as necessary to 26 bytes.

For an MD iterated hash functignand an input message, the ShrinkingARC4-strengthening
(or SA-strengtheningof & is defined as a hash functignwith g(m) = h(msr(m)||sah(m)),
where|| denotes concatenation. It should be clear that this apprizasuitable for processing
streaming datd9].

D. Test Vectors

We now give some examples. TeBarunken ARC4 hastor a null input message is 60 bytes
long; it has the following hexstring representation:

6bc501d7d4ccf 1d8c7121a6ealOb384dled4cef f bf 9a39db6f f d2ec97175ddc2a
88db065c9579c8ea7a78a6¢c6ddlf bhd8a66030eb911d99455df 0d5416

Let SAMDS5 denote th&A-strengthenellD5. Then the SAMDS5 hash of a null input message
is the MD5 hash of the above shrunken ARC4 hash. Therefoeequitput is:

765f f aac6f a64bd6f 49f 9d715f 1168e7

Let SASHAL denote thesA-strengthene@HAL. Then the SASHAL hash of a null input
message is the SHAL hash of the above shrunken ARC4 hastefdtesrthe output is:

3cf 2e441e0e25e014355e845827acf af 99b344d5

If the parity accumulatoris not used, then thehrunken ARC4 hasdfor a null input message
is 63 bytes long, and it has the following hexstring represeotati

6b2bd776d4af ccabf 115¢c7¢c312e21a3bb3e384f c4ccf ef 4df 97f a38f 9df 5b621
ffOceca75d73dceedb3206d3956dea08782ea63e6635b9c1111e55a10de654

Suppose now that a 16-byte input message has the followirgfrirey representation:
000102030405060708090a0b0c0d0e0f

Since the length of this input messagelébytes (which is less thakb6 bytes), it must be
fed repeatedly (i.e.16 times) to the underlying hash function. k&runken ARC4 hasis 60
bytes long with the following hexstring representation:

3f 89e5827ccf 1f caf 65achad539145215d05f 078b133bd206039ea7554c51a3e
d30b70a7307b809641460f 37a6edac356ab62b6336717215119b657d

Its SAMD5 hash value is:
470debadf d0a26212dc806939b79b558

Its SASHA1 hash value is:
bb3e476e73abbbb4834b15d0ecf d814b9ba67c2a

E. Notes on Shrunken ARC4 Hash Statistics

Given a collection of random input messages, a desirablpepty is that the distribution of
the length of a shrunken ARC4 hash has a meaidiytes. We have generated a large number
of random input messages of various lengths, and our expatgrindicate that this is indeed
the case.

F. Parameterization

For SA-strengtheningsome variations are possible. For example, (1) not usiegp#rity
accumulator (2) using a different algorithm to initialize the statear(instead of using the
AES S-box), (3) no padding (this includes not using messafferepeat for short messages),
(4) always padding the message with bytes of zeroes so th&enigth of the padded message is
a multiple of256 bytes (not usingnessage self-repefdr short messages), (5) always padding
first with one non-zero byte (e.g0x80), and then adding as few bytes of zeroes as needed so
that the length of the padded message is a multipl256fbytes, and (6) instead of outputting
the state array sequentially as the ARC4 hash value, use R@&4/utput algorithm to “clock
out” some fixed number of bytes. However, we do not recommemnydad the above options
and suggest thabA-strengtheninghould be used without any parameters. The reasons are as
follows.

1) No parity accumulatorThe use of the parity accumulator extends the state of the SA
engine by 8 bits. This increases the complexity of the SA mmgind makes the SA
engine more difficult to model.

2) Different initial state.The AES S-box is arbitrarily chosen as the initial state ef state
array in the SA engine. At the time of this writing, there doesappear to be an advantage
to using a different initial state.

3) No padding.The disadvantage of this approach is th&C4 hashesf short messages
with the same prefix can be very similar.

4) Pad with zeroes to multiple @6 bytes.The main advantage of this approach is simplicity.
However, a disadvantage is that for short messages, paddithgzeroes may be less
effective in mixing the state array as compared to paddirth thie message itself.

5) Pad with0x80 followed by zeroes to multiple @66 bytes.The advantage of this approach
is that the padded message is unique. But, uniqueness iequited (as in the case of
MD-strengthening). The disadvantage is that a totaR@d bytes will be added if the
length of the original input message is a multiple266 bytes. This overhead may not be
desirable.

6) Use the ARC4 output algorithm to generate the ARC4 hash vaheadvantage of using
the ARC4 output algorithm is that (a) we can reduce the sizh@®fARC4 hash to speed
up the hash computation, and (b) we can fine-tune the numbgytes in the ARC4 hash.
But this can be viewed as a disadvantage since we do not knawtamy bytes to output.
Simply outputting the state array as the ARC4 hash has thansalyes of simplicity and
that it gives additional structure in the expanded messsigee the state array is always
a permutation of the value8,through255.

I1l. XSA-STRENGTHENING

SA-strengthenings similar to MD-strengtheningn that (a) each method produces a block
to be appended to the input message, and (b) the expandedgedsded to the iterated hash
function. As proposed in [8] and [9], additional blocks camibserted at various places of the
input message to provide additional strengthening. Siiyjlave propose a way of extending
SA-strengthening by insertingariable-length blockst fixed positions of the input message,
to provide additional protection. We call thesXtremeShrinkingARCA4-strengthenifay XSA-
strengtheniny

The basic idea is quite simple. For evéj6 bytes of the original input message, inseror
fewer bytes (and bytes on the average) based on the state of the modified AR IciWe
refer to these added bytes asise byteslf the length of the input message is not a multiple
of 256 bytes, nonoise bytesire appended at the end. After the whole input message is aead
shrunken ARC4 has appended at the end. (In general, we can insert Ug twise bytes for
every 2K bytes of the original input message. The following disamsss limited to the case
where K = 8.)

The noise bytecan be obtained by selectiri@ bytes from the state array and applying the
shrinking algorithm described in Section II-B withbeing16. The16 bytes can come from fixed
locations of the state array. But we chose to basically usendifrad ARC4 output algorithm
to “clock out” 16 bytes as follows (withr being 16).

(10a) for i fromO to (r-1) do

(11D u:=(u+ 1) nod 256

(12) v := (v + S[u]) nod 256

(13) swap(S[u], S[v])

(14) output S[(S[u] + S[v]) nod 256]

(15a) end for

Please note that variablesandv are now globally persistent variables (and no longer local
to the output algorithm). Therefore, we need to modify thédlization algorithm as below:
(0 wuu:=v:=pacc :=0
(1) for i fromO to 255
(2a) S[i] := sbox[i]

Please also note that tiparity accumulatoiis a globally persistent variable as well. It carries
the XOR’ed values of all examined parity bytes.

A. Taking Care of Short Messages

Since nonoise bytewill be inserted for an input message whose length is led2fitabytes,
short input messages may be more vulnerable to attackswBeéodescribe a way of inserting
noise bytesnto short messages.

The basic idea here is also quite simple, and it only apptigbe first128 bytes of the input
message. After reading a total ®f bytes from the input, wheré > 1 andk < 7, insert at
most . bytes into the message. (In the general setting describedeab < k£ < K — 1.) The
modified ARC4 output algorithm described above can be uséudwbeing 2k.

10

Please note that if the length of the input message is lessitttabytes, the input message
must be repeated and expanded to conform tantesesage self-repeatquirement described in
Section II-A.

Since we do not want to rely on knowing the length of an inpussage (in order to satisfy the
streaming data requirement), we will carry out the openrgjtist described during the processing
of the first 128 bytes of input data for all messages.

B. Test Vectors

For a null message, naoise bytexan be added. In this cas€SA-strengthenellD iterated
hash function outputs the same hash value as a correspddAistyengthenellD iterated hash
function.

Given a 16-bytes input message with the following hexstrigjgresentation:

000102030405060708090a0b0c0d0eOf
We tabulate thenoise bytesand shrunken noise bytdselow for all values ofk. The shrunken

noise bytesare fed to the original hash function after theth bytes of the input message are
fed to the original hash function.

k T noise bytes (hexstring) shrunken noise bytes (hexstring)
1 | 35el (none)

2 | 08e0Ocad5 e0d5

3 | c46793162903 03

4 | bdfa2b641436a697 fa643697

5 | 6d58cf40933db4f54402 (none)

6 | 7ef3a62a00e3693eealc2913 Oc

7 | d84e98d8333e4a09ebb394efdeba d83eefba

8 | bc444d8a39d98ee735b301e220727454254

In this case, theshrunken ARC4 hasik 63 bytes long with the following hexstring represen-
tation:

6608deeb510ca3af 7¢7912a4435b5e95564154307ed2b88a24bcf bcc5990c082
11672e196¢c3e01f f 776a87982abbd3375f 4c4ecdbd768063736de948b538bha

Thus, the original hash function is fed the following date.(ithe expanded input message):

00010203e0d5040506070308090a0b0c0d0eOf f 2643697
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0e0f Oc
000102030405060708090a0b0c0d0eOf
000102030405060708090a0b0c0d0eOf
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0e0f d83eef 6a
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0eOf
000102030405060708090a0b0c0d0eOf
000102030405060708090a0b0c0d0eOf
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0e0f e254
6608deeb510ca3af 7¢7912a4435b5e95564154307ed2b88a24bcf bcc5990c082

11

11672e196¢c3e01f f 776a87982abbd3375f 4c4ecdbd768063736de948b538ba

Let XSAMD5 denote theXSA-strengtheneMID5. For the above 16-byte input message, its
XSAMDS5 hash value is as follows:

a08d2d01a8a9%e6e46f c8709283846b83

Let XSASHAL denote thXSA-strengthene8HAL. For the above 16-byte input message, its
XSASHAL hash value is as follows:

€c120c4b6bb057558f 474c07c9f bd1566e1908f 46

C. Parameterization

XSA-strengtheningnly has one parametefy, which was introduced at the beginning of
Section Ill. By default,K is 8 and it corresponds to the internal table size of the ARC4rengi
used. For a long message, excluding for the fift-byte block and the last block, the average
overhead ist bytes of inserted data for eve®h6 bytes of input datal(6% overhead). The
first 256-byte block has an expected overhead36fbytes, and the last block has an expected
overhead of64 bytes. For a very short message (less tRa6 bytes in length), there is a
fixed overhead of 00 bytes on the average. If it is desirable to have smaller @attior long
messages, a largéf can be usedK < 8 is not recommended because it will result in output
being performed before the internal states have gone thraufyll permutation cycle.

IV. SECURITY RATIONALE

With external message expansjaamn expanded input message is created from the original
input message by introducing redundant information in® mhessage stream. The redundant
information creates dependencies among bits in the expampeit message. In a way, the
redundant information createsgructurein the expanded input message. This is similar to the
way MD-strengthening creates structure in the expandeat im@ssage. WittsA-strengthening
andXSA-strengtheningnore and more structure is introduced into the expanded imessage.

In [9], Szydlo and Yin showed that external message expan@igessage pre-processing)
can mitigate all known collision attacks for the approactiesy proposed. We think that the
same argument can be made for SA-strengthening and XSAg#irening, although we have not
done the analysis to date (SA-strengthening and XSA-stinengng appear to be more difficult
to analyze due to the complexity of the ARC4 cipher and thé&swinking property of the
output.)

Since message-dependent variable-length external nmessqgansion is a new technique,
further carefully examination must be performed beforeaih be used widely.

V. CONCLUSIONS

In this paper we presented a novel method for external messggansion in order to create
drop-in replacements of MD5 and other iterated hash funsti@he original hash functions are
unaltered. We called our methaeXtremeShrinkingARCA4-strengtheniog XSA-strengthening
In XSA-strengtheningwe modified theARC4 stream cipheto be used as a hash function
and a byte stream generator. We then used the ideaseifahrinking generatoto generate

12

message-dependent variable-lenggiise byte$o be inserted into the original input message and

a message-dependent variable-length block to be appeoadied briginal input message to form

an expanded message. We uspaaity accumulatorto create additional dependencies among

the inserted data. For short messages, wenusgsage self-repeédr additional protection.
XSA-strengtheningas many attractive properties:

« it can be applied to any MD iterated hash function

« the underlying hash function is kept unaltered

« it is deterministic and simple to understand

« it has a fixed memory footprint and supports streaming data

« it has small computational overhead

« for a large input message, it expands the input message byakh amount

One disadvantage of XSA-strengthening is that for shomiimpessages (less thai6 bytes in
length), it expands the input message by at léastbytes, on the average.
XSA-strengthening not intended to be a replacement of a well-designed cgypfihic hash
function. However, we think that it can be a practical toal $trengthening and increasing the
useful lifetime of an MD iterated hash function. Since XSiteagthening only expands the input
message externally, potentially it may be useful for non-Ktdated hash functions as well.

REFERENCES

[1] X. Wang and H. Yu, “How to break MD5 and other hash funcsigin Advances in Cryptology, EUROCRYPT, 05
R. Cramer, Ed. Springer-Verlag, 2005, pp. 19-35.
[2] X. Wang, Y. Yin, and H. Yu, “Finding collisions in the fulBHA-1,” in Advances in Cryptology, CRYPTO’05
V. Shoup, Ed. Springer-Verlag, 2005, pp. 18-36.
[38] R. Rivest,RFC 1321: The MD5 Message-Digest Algorithinttp://www.ietf.org/rfc/rfc1321.txt.
[4] D. Eastlake and P. JoneRFC 3174: US Secure Hash Algorithm 1 (SHAdfp://www.ietf.org/rfc/rfc3174.txt.
[5] I. Damgard, “A design principle for hash functions,” Advances in Cryptology, CRYPTO!8%pringer-Verlag,
1989, pp. 416-427.
[6] R. C. Merkle, “One way hash functions and des,”Advances in Cryptology, CRYPTQO'89Springer-Verlag,
1989, pp. 428-446.
[7] X. Lai and J. Massey, “Hahs functions based on block diphién Advances in Cryptology, EUROCRYPT.92
Springer-Verlag, 1992.
[8] N.Kauer, T. Suarez, and Y. Zheng, “Enhancing the MD+ggtbening and designing scalable families of one-way
hash algorithms,” irR005 Cryptographic Hash Worksho@aithersburg, Maryland, October-November 2005.
[9] M. Szydlo and Y. Yin, “Collision-resistant usage of MD5 & SHA-1 via message preprocessing,” 2005
Cryptographic Hash Workshoggaithersburg, Maryland, October-November 2005.
[10] J. Fortner,A Method for Pre-Processing Message Digest Outfunpublished, see
http://csrc.nist.gov/pki/HashWorkshop/2006/prografio6. htm#unaccepted).
[11] J. Coron, Y. Dodis, C. Malinaud, and P. Puniya, “Merkl@ngard revisited : How to construct a hash function,”
in Advances in Cryptology, CRYPTO:05Springer-Verlag, 2005.
[12] W. Meier and O. Staffelbach, “The self-shrinking geater,” in Advances in Cryptology, EUROCRYPT,94
A. de Santis, Ed. Springer-Verlag, 1994, pp. 205-214.
[13] K. Kaukonen and R. ThayerA Stream Cipher Encryption AlgorithnArcfour, IETF Internet Draft,
http://tools.ietf.org/html/draft-kaukonen-ciphemctour-03, 1999.
[14] J. Hoch and A. Shamir, “Breaking the ICE - finding multicsions in iterated concatenated and expanded (ICE)
hash functions,” inFast Software Encryption 200&raz, Austria, March 2006.
[15] NIST, Announcing the Advanced Encryption Standard (AE®S 197, 2001.

