
1

XSA-strengthening: Strengthening MD5
and Other Iterated Hash Functions Through

Variable-length External Message
Expansion

[Rev. 1, CSD Tech. Report 08-894, USC, Los Angeles, California, Sep. 2008.]

William C. Cheng
Dept. of Computer Science

University of Southern California
Los Angeles, California

bill.cheng@usc.edu

Leana Golubchik
Computer Science, EE-Systems, IMSC

University of Southern California
Los Angeles, California

leana@cs.usc.edu

Abstract

In recent years, it has been demonstrated that collisions can be systematically constructed
for some popular cryptographic hash algorithms, such as MD5and SHA-1. Various ways
of enhancing these hash functions viamessage pre-processingor external message expan-
sion have been proposed to make them resistant to known collisionattacks. Message pre-
processing/expansion is a way of creating a new hash function from an original one. It has the
advantage of being backward-compatible with the original hash function, and therefore, may
extend the useful life of the original hash function.

In this paper, we examine a novel approach to message pre-processing/expansion, which we
call eXtremeShrinking ARC4 Strengthening(or XSA-strengthening). XSA-strengtheningis based
on the idea of the self-shrinking generator, the ARC4 cipher, andMD-strengtheningand can
be applied to anyMerkle-Damg̊ard iterated hash function. XSA-strengtheningis deterministic,
has small space and computational overhead, and can be efficiently implemented. We believe
that it can be a useful tool for strengthening Merkle-Damgård iterated hash functions.

Index Terms

Hash functions, MD5, SHA-1, Collisions, External Message expansion, Message Pre-
processing

I. INTRODUCTION

A cryptographic hash function is a vital component in many security products and services
such as digital signatures, authentication services, virus checkers, etc. An important property of a
cryptographic hash function iscollision resistance. With collision resistance, it is computationally
difficult to find two distinct input strings that hash to the same value. The security of some of
these products and services depends on the collision resistance property of the underlying hash
functions.

2

In recent years, it has been demonstrated (e.g., in [1] and [2]) that collisions can be sys-
tematically constructed for some popular cryptographic hash algorithms that are based on the
Merkle-Damg̊ard construction, such as MD5 [3] and SHA-1 [4]. Researcher have been seeking
replacements for these “broken” hash functions to be used infuture security products and
services. One approach is to stay with the Merkle-Damgård construction design principle and
design new hash functions that are resistant to current attacks. Another approach is to invent
new hash functions that are not based on the Merkle-Damgårdconstruction. A third approach
is to continue with Merkle-Damgård construction but also use external message expansion(or
message pre-processing) to create a new hash function from an existing one. With external
message expansion, the original hash function is not altered, but the input to the original hash
function is modified and/or expanded. Since the original hash function is preserved, external
message expansion has the advantage that it is backward-compatible, and therefore, may extend
the useful life of the original hash function. External message expansion is the main focus of this
paper. (For the rest of this paper, we will use the abbreviation MD to stand forMerkle-Damg̊ard
, except in the context of the MD5 algorithm.)

Please note that the termmessage expansionoften refers to expanding a message blockinside
a hash function. Since our goal is to leave the original hash function unaltered, we use the term
external message expansionto mean performing message expansionoutsidethe original hash
function.

A. External Message Expansion

In Figure 1(a), we illustrate the approach where the original input message is fed directly
to the original hash function to produce a hash value. In Figure 1(b), we depict theexternal
message expansionapproach, where blocks are inserted into various places of the original input
message to create an expanded input message. The expanded input message is fed to theunaltered
original hash function to produce a hash value. In general, not all inserted blocks are equal in
size; furthermore, they do not have to be inserted at regularintervals.

h
Original
Hash
Function

(a) Without External Message Expansion (b) With External Message Expansion

Expanded
Input
Message

Original
Input
Message

M1 M2 M3 M4

M1 M2 M3 M4

h
Original
Hash
Function

Original Input Message

External Message Expansion

Fig. 1. Computing a hash value with or withoutexternal message expansion.

We can viewMD-strengthening[5], [6] as an approach that uses external message expansion.
With MD-strengthening, the length of the input message is encoded in aLength blockwhich

3

is appended to the input message. (Some padding bits are inserted between the original input
message and the Length block if necessary.) The expanded message is then fed into the iterated
hash process. With the use of MD-strengthening, it is difficult to create collisions for messages
of different lengths. In a way, MD-strengthening forces an attacker to look for collisions from
messages having the samestructure. It was suggested in [7] that “iterated hash functions should
be used only with MD-strengthening”.

Our basic idea is to create a message-dependentvariable-length block, which we call the
SA block, to be appended to the original message. The expanded message is then fed into an
unmodified MD iterated hash function. The SA block is thus inserted between the original
message and the MD Length block. The length of the SA block is afunction of the original
message. We would like the content of the SA block to be hard tocontrol in an attack. In
addition, if we can make thelengthof the SA block difficult to control, then MD-strengthening
can help to make it even harder to create collisions. Similarly to many previously proposed
external message expansion techniques, this technique canbe applied to any MD iterated hash
functions. We call our techniqueShrinkingARC4-strengthening(or SA-strengthening). To provide
additional protection, we present a relatively straight-forward extension toSA-strengthening
which we calleXtremeShrinkingARC4-strengthening(or XSA-strengthening). The basic idea of
XSA-strengtheningis to insert additionalvariable-length blocksinto the message stream.

In [8], Kauer et al. proposed to expand the input message by using another hash function, in
their case, akeyed hash function, to compute atag of the input. Thetag is added at the beginning
and the end of the original input message to produced the expanded input message. The expanded
input message is fed to the original unmodified hash function. The original input message can
also be segmented and the same method can be used with each segment. A drawback of this
approach is that its computational overhead can cause loss of performance.

In [9], Szydlo and Yin proposed three methods. One is calledmessage whiteningwhere
strings of zeroes are inserted into the original input message at predetermined positions. The
second method is calledmessage self interleavingwhere the message is divided into blocks and
duplicates of these blocks are inserted into the original message. The third method is called
message duplicationwhere the message is concatenated with itself to produce theexpanded
message. All these methods can be efficiently implemented. Adrawback of these approaches is
that, in practice, the expanded message length can be at least 25% more than the input message
and this may slowdown performance.

In an unpublished paper, Fortner proposed to append the state variables of a mechanism that
permutes the elements of an array in a seemingly random way [10]. Although Fortner’s proposal
did not use theARC4 cipher, it is similar to our proposal ofARC4 Hashdescribed in Section
II-A. Many of the parameters in Fortner’s proposal, such as the size of the array, how to initialize
the array, and initial values of the registers, are left unspecified.

All of the above proposals (and others, such as [11], which consider improvements to hash
functions but do not specifically focus on external message expansions) only considered inserting
fixed-size blocks into the original input message. WithSA-strengthening, we use the idea of a
self-shrinking generator[12] to produce variable-lengthShrunkenARC4 blocks(or SA blocks)
to be inserted into the message stream.To the best of our knowledge, there is no existing
work on using message-dependent variable-length externalmessage expansion to strengthen a
hash function.To be efficient in calculating the SA block, we use a modified ARC4 algorithm.

4

Traditionally, the self-shrinking generator and ARC4 [13]are both used in stream ciphers. We
choose them because they have nice security properties and because they are efficient in both
space and time.

The remainder of this paper is structured as follows. In Section II, we presentSA-strengthening.
We describe how we modify the ARC4 cipher to be used as a hash function and how to
generate a variable-length SA block to expand the input message. Section III presents additional
strengthening to our approach calledXSA-strengthening. In Section IV, we give our security
rationale. Section V concludes with a summary and a discussion.

II. SA-STRENGTHENING

Motivated by efficiency, we mainly operate in octets (or equivalently, bytes). If the bit length
of the input message is not a multiple of 8 bits, it is padded with zero bits to make the bit
length a multiple of 8 bits. We will use theinput[] array to represent the input message where
input[0] is the first byte of the input message.

A. ARC4 Hash

We first describe how we modify the ARC4 cipher and make it intoa hash function. The
internal state for the ARC4 cipher includes an array of 256 bytes denoted byS[0..255].
ARC4 also uses two index registers,i andj, where registeri steps through the array indices
and registerj indexes seemingly random element of the array.

ARC4 can be divided into 3 algorithms. Theinitialization algorithm initializes the array to
an incrementing pattern, and it is depicted as follows:

(1) for i from 0 to 255
(2) S[i] := i

The key schedulingalgorithm uses a key array to permute the state array into a seemingly
random pattern. The key scheduling algorithm is depicted inpseudocode as follows, with the
key array denoted bykey[0..(n-1)] wheren denotes the length of the key in bytes:

(3) j := 0
(4) for i from 0 to 255 do
(5) j := (j + S[i] + key[i mod n]) mod 256
(6) swap(S[i],S[j])
(7) end for

The outputalgorithm selects seemingly random elements of the state array and outputs their
values. It is depicted as follows:

(8) u := v:= 0
(9) while GeneratingOutput do:
(10) u := (u + 1) mod 256
(11) v := (v + S[u]) mod 256
(12) swap(S[u],S[v])
(13) output S[(S[u] + S[v]) mod 256]
(14) end while

To convert ARC4 into a hash function, we can simply substitute the input message for the
key array. Letn be the length of the input message in bytes. If the length of the message is less

5

than256 bytes, line (5) above may use the input message multiple times. Thus, line (5) can be
replaced by line (5a) below:

(5a) j := (j + S[i] + input[i mod n]) mod 256

If the length of the message is greater than or equal to256 bytes, we replace lines (4) and
(5) above with lines (4a), (4b), and (5b) below:

(3) j := 0
(4a) for x from 0 to n-1 do
(4b) i := x mod 256
(5b) j := (j + S[i] + input[x]) mod 256
(6) swap(S[i],S[j])
(7) end for

We require that for a non-null message whose length is less than256 bytes, the input message
is repeatedly fed to the original hash function until256 bytes are sent. This is similar tomessage
duplicationdescribed in [9]. But unlike [9], we do not restrict the inputmessage to be repeated
at most twice. Although it has been shown that feeding the input message multiple times may
not increase the strength of the hash function substantially [14], it is done here to ensure that
every element of the state array has been moved. We will referto this as theMessage Self-Repeat
(or MSR) requirement.

Another modification we make is to use a slightly different initialization algorithm, in order
to make the initial pattern in the state array more difficult to model in an attack. We arbitrarily
choose to initialize the state array to the values of the AES S-box [15]. The AES S-box is
depicted next:

63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Let sbox[0..255] be the array that holds the values of the AES S-box, i.e.,sbox[0]=0x63,
sbox[1]=0x7c, . . ., sbox[255]=0x16. The updated initialization algorithm is then as follows:

(1) for i from 0 to 255
(2a) S[i] := sbox[i]

We now assume the use of the updated initialization and key scheduling algorithm (with (2a),
(4a), (4b), (5a), and (5b)). Then, after we have exhausted the input, we can simply output the
state array sequentially as the hash value. (We do not need the ARC4 output algorithm here.)
The hash value is always 256 bytes in length. We will refer to this algorithm as theARC4 hash
algorithm and to the hash it produces as theARC4 hashof the input message.

6

The ARC4 hash algorithm described here is fast and takes constant (and small) amount of
space to execute. Butit is not a good cryptographic hash algorithm. For instance, if two input
messages differ only in the last byte, their ARC4 hashes willdiffer by at most three bytes. In
addition, in the case of very short messages, the corresponding ARC4 hashes can be similar.
Yet it may still be useful in strengthening the original hashfunction, if it is used to expand the
input message. (Recall that with MD-strengthening, the length block is a very simple function
of the input message. Yet it has utility in guarding against some collision attacks.)

Given the above algorithm, the size of an ARC4 hash is fixed. Below, we show how to make
it into a variable-length hash.

B. Shrunken ARC4 Hash

Let a[0..(n-1)] be an array of bytes wheren is an even number. Let theparity of a byte
be the bit-wise XOR of all the bits in the byte. (To calculate the parity of a byte efficiently, a
lookup table can be used.) Letshrink(a) be defined by the following pseudocode:

(15) i := 0
(16) while i < n do
(17) if parity(a[i]) = 1
(18) output a[i+1]
(19) i := i + 2
(20) end while

In the above procedure, we will refer toa[0], a[2], ...,a[n-2] asparity bytes. If the parity
of a parity byte is odd, the following byte is included in the output. Otherwise, the following
byte is not included in the output.

If a is an ARC4 hash, we will refer toshrink(a) as ashrunken ARC4 hash. The length
of a shrunken ARC4 hash may range from0 to 128 bytes. If two ARC4 hashes differ in only
two bytes, then there is a reasonably high probability that their shrunken hashes are identical.
If we use aparity accumulator, we may lessen this problem. Theparity accumulatoris a byte
corresponding to the byte-XOR of all the previous bytes whose parity has been examined. Its
initial value is set to zero. Instead of evaluating the parity of the current byte, we evaluate the
byte-XOR value of the current byte and the parity accumulator. Let the variablepacc be the
parity accumulator; we modifyshrink(a) to be the following:

(15) i := 0
(16) while i < n do
(16a) pacc := pacc XOR a[i]
(17a) if parity(pacc) = 1
(18) output a[i+1]
(19) i := i + 2
(20) end while

We usesah(m) to denote theshrunken ARC4 hashof an input messagem. Please note that a
shrunken ARC4 hashis a function of the input messageonly. It does not depend on the original
hash function. It is clear that if two input messages have identical ARC4 hash values, their
shrunken ARC4 hash values will also be identical since our algorithm isdeterministic.

7

C. SA-strengthening

Let m be an input message. Letmsr(m) be equal tom if m is the null message or if the
length ofm is greater than or equal to256 bytes. Otherwise,msr(m) is obtained by repeating
m as many times as necessary to fill256 bytes.

For an MD iterated hash functionh and an input messagem, theShrinkingARC4-strengthening
(or SA-strengthening) of h is defined as a hash functiong with g(m) = h(msr(m)||sah(m)),
where || denotes concatenation. It should be clear that this approach is suitable for processing
streaming data[9].

D. Test Vectors

We now give some examples. Theshrunken ARC4 hashfor a null input message is 60 bytes
long; it has the following hexstring representation:

6bc501d7d4ccf1d8c7121a6ea0b384d1ed4ceffbf9a39db6ffd2ec97175ddc2a
88db065c9579c8ea7a78a6c6dd1fbd8a66030eb911d99455df0d5416

Let SAMD5 denote theSA-strengthenedMD5. Then the SAMD5 hash of a null input message
is the MD5 hash of the above shrunken ARC4 hash. Therefore, the output is:

765ffaac6fa64bd6f49f9d715f1168e7

Let SASHA1 denote theSA-strengthenedSHA1. Then the SASHA1 hash of a null input
message is the SHA1 hash of the above shrunken ARC4 hash. Therefore, the output is:

3cf2e441e0e25e014355e845827acfaf99b344d5

If the parity accumulatoris not used, then theshrunken ARC4 hashfor a null input message
is 63 bytes long, and it has the following hexstring representation:

6b2bd776d4afcca5f115c7c312e21a3bb3e384fc4ccfef4df97fa38f9df5b621
ff0ceca75d73dceedb3206d3956dea08782ea63e6635b9c1111e55a10de654

Suppose now that a 16-byte input message has the following hexstring representation:

000102030405060708090a0b0c0d0e0f

Since the length of this input message is16 bytes (which is less than256 bytes), it must be
fed repeatedly (i.e.,16 times) to the underlying hash function. Itsshrunken ARC4 hashis 60
bytes long with the following hexstring representation:

3f89e5827ccf1fcaf65acbad539145215d05f078b133bd206039ea7554c51a3e
d30b70a7307b809641460f37a6edac356ab62b6336717215119b657d

Its SAMD5 hash value is:

470debadfd0a26212dc806939b79b558

Its SASHA1 hash value is:

bb3e476e73abbbb4834b15d0ecfd814b9ba67c2a

8

E. Notes on Shrunken ARC4 Hash Statistics

Given a collection of random input messages, a desirable property is that the distribution of
the length of a shrunken ARC4 hash has a mean of64 bytes. We have generated a large number
of random input messages of various lengths, and our experiments indicate that this is indeed
the case.

F. Parameterization

For SA-strengthening, some variations are possible. For example, (1) not using the parity
accumulator, (2) using a different algorithm to initialize the state array (instead of using the
AES S-box), (3) no padding (this includes not using message self-repeat for short messages),
(4) always padding the message with bytes of zeroes so that the length of the padded message is
a multiple of256 bytes (not usingmessage self-repeatfor short messages), (5) always padding
first with one non-zero byte (e.g.,0x80), and then adding as few bytes of zeroes as needed so
that the length of the padded message is a multiple of256 bytes, and (6) instead of outputting
the state array sequentially as the ARC4 hash value, use the ARC4 output algorithm to “clock
out” some fixed number of bytes. However, we do not recommend any of the above options
and suggest thatSA-strengtheningshould be used without any parameters. The reasons are as
follows.

1) No parity accumulator.The use of the parity accumulator extends the state of the SA
engine by 8 bits. This increases the complexity of the SA engine and makes the SA
engine more difficult to model.

2) Different initial state.The AES S-box is arbitrarily chosen as the initial state of the state
array in the SA engine. At the time of this writing, there doesnot appear to be an advantage
to using a different initial state.

3) No padding.The disadvantage of this approach is thatARC4 hashesof short messages
with the same prefix can be very similar.

4) Pad with zeroes to multiple of256 bytes.The main advantage of this approach is simplicity.
However, a disadvantage is that for short messages, paddingwith zeroes may be less
effective in mixing the state array as compared to padding with the message itself.

5) Pad with0x80 followed by zeroes to multiple of256 bytes.The advantage of this approach
is that the padded message is unique. But, uniqueness is not required (as in the case of
MD-strengthening). The disadvantage is that a total of256 bytes will be added if the
length of the original input message is a multiple of256 bytes. This overhead may not be
desirable.

6) Use the ARC4 output algorithm to generate the ARC4 hash value. The advantage of using
the ARC4 output algorithm is that (a) we can reduce the size ofthe ARC4 hash to speed
up the hash computation, and (b) we can fine-tune the number ofbytes in the ARC4 hash.
But this can be viewed as a disadvantage since we do not know how many bytes to output.
Simply outputting the state array as the ARC4 hash has the advantages of simplicity and
that it gives additional structure in the expanded message,since the state array is always
a permutation of the values,0 through255.

9

III. XSA- STRENGTHENING

SA-strengtheningis similar to MD-strengtheningin that (a) each method produces a block
to be appended to the input message, and (b) the expanded message is fed to the iterated hash
function. As proposed in [8] and [9], additional blocks can be inserted at various places of the
input message to provide additional strengthening. Similarly, we propose a way of extending
SA-strengthening by insertingvariable-length blocksat fixed positions of the input message,
to provide additional protection. We call thiseXtremeShrinkingARC4-strengthening(or XSA-
strengthening).

The basic idea is quite simple. For every256 bytes of the original input message, insert8 or
fewer bytes (and4 bytes on the average) based on the state of the modified ARC4 cipher. We
refer to these added bytes asnoise bytes. If the length of the input message is not a multiple
of 256 bytes, nonoise bytesare appended at the end. After the whole input message is read, a
shrunken ARC4 hashis appended at the end. (In general, we can insert up toK noise bytes for
every 2K bytes of the original input message. The following discussion is limited to the case
whereK = 8.)

The noise bytescan be obtained by selecting16 bytes from the state array and applying the
shrinking algorithm described in Section II-B withn being16. The16 bytes can come from fixed
locations of the state array. But we chose to basically use a modified ARC4 output algorithm
to “clock out” 16 bytes as follows (withr being16).

(10a) for i from 0 to (r-1) do
(11) u := (u + 1) mod 256
(12) v := (v + S[u]) mod 256
(13) swap(S[u],S[v])
(14) output S[(S[u] + S[v]) mod 256]
(15a) end for

Please note that variablesu andv are now globally persistent variables (and no longer local
to the output algorithm). Therefore, we need to modify the initialization algorithm as below:

(0) u := v := pacc := 0
(1) for i from 0 to 255
(2a) S[i] := sbox[i]

Please also note that theparity accumulatoris a globally persistent variable as well. It carries
the XOR’ed values of all examined parity bytes.

A. Taking Care of Short Messages

Since nonoise byteswill be inserted for an input message whose length is less that 256 bytes,
short input messages may be more vulnerable to attacks. Below we describe a way of inserting
noise bytesinto short messages.

The basic idea here is also quite simple, and it only applies to the first128 bytes of the input
message. After reading a total of2k bytes from the input, wherek ≥ 1 and k ≤ 7, insert at
mostk bytes into the message. (In the general setting described above,1 ≤ k ≤ K − 1.) The
modified ARC4 output algorithm described above can be used with r being2k.

10

Please note that if the length of the input message is less than 128 bytes, the input message
must be repeated and expanded to conform to themessage self-repeatrequirement described in
Section II-A.

Since we do not want to rely on knowing the length of an input message (in order to satisfy the
streaming data requirement), we will carry out the operation just described during the processing
of the first 128 bytes of input data for all messages.

B. Test Vectors

For a null message, nonoise bytescan be added. In this case,XSA-strengthenedMD iterated
hash function outputs the same hash value as a correspondingSA-strengthenedMD iterated hash
function.

Given a 16-bytes input message with the following hexstringrepresentation:

000102030405060708090a0b0c0d0e0f

We tabulate thenoise bytesand shrunken noise bytesbelow for all values ofk. The shrunken
noise bytesare fed to the original hash function after the2k-th bytes of the input message are
fed to the original hash function.

k noise bytes (hexstring) shrunken noise bytes (hexstring)
1 35e1 (none)
2 08e0cad5 e0d5
3 c46793162903 03
4 bdfa2b641436a697 fa643697
5 6d58cf40933db4f54402 (none)
6 7ef3a62a00e3693eea0c2913 0c
7 d84e98d8333e4a09ebb394efde6a d83eef6a
8 bc444d8a39d98ee735b301e220727a54e254

In this case, theshrunken ARC4 hashis 63 bytes long with the following hexstring represen-
tation:

6608deeb510ca3af7c7912a4435b5e95564154307ed2b88a24bcfbcc5990c082
11672e196c3e01ff776a87982abbd3375f4c4ecdbd768063736de948b538ba

Thus, the original hash function is fed the following data (i.e., the expanded input message):

00010203e0d5040506070308090a0b0c0d0e0ffa643697
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0e0f0c
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0e0fd83eef6a
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0e0f
000102030405060708090a0b0c0d0e0fe254
6608deeb510ca3af7c7912a4435b5e95564154307ed2b88a24bcfbcc5990c082

11

11672e196c3e01ff776a87982abbd3375f4c4ecdbd768063736de948b538ba

Let XSAMD5 denote theXSA-strengthenedMD5. For the above 16-byte input message, its
XSAMD5 hash value is as follows:

a08d2d01a8a9e6e46fc8709283846b83

Let XSASHA1 denote theXSA-strengthenedSHA1. For the above 16-byte input message, its
XSASHA1 hash value is as follows:

c120c4b6bb057558f474c07c9fbd1566e1908f46

C. Parameterization

XSA-strengtheningonly has one parameter,K, which was introduced at the beginning of
Section III. By default,K is 8 and it corresponds to the internal table size of the ARC4 engine
used. For a long message, excluding for the first256-byte block and the last block, the average
overhead is4 bytes of inserted data for every256 bytes of input data (1.6% overhead). The
first 256-byte block has an expected overhead of36 bytes, and the last block has an expected
overhead of64 bytes. For a very short message (less than256 bytes in length), there is a
fixed overhead of100 bytes on the average. If it is desirable to have smaller overhead for long
messages, a largerK can be used.K < 8 is not recommended because it will result in output
being performed before the internal states have gone through a full permutation cycle.

IV. SECURITY RATIONALE

With external message expansion, an expanded input message is created from the original
input message by introducing redundant information into the message stream. The redundant
information creates dependencies among bits in the expanded input message. In a way, the
redundant information createsstructure in the expanded input message. This is similar to the
way MD-strengthening creates structure in the expanded input message. WithSA-strengthening
andXSA-strengthening, more and more structure is introduced into the expanded input message.

In [9], Szydlo and Yin showed that external message expansion (message pre-processing)
can mitigate all known collision attacks for the approachesthey proposed. We think that the
same argument can be made for SA-strengthening and XSA-strengthening, although we have not
done the analysis to date (SA-strengthening and XSA-strengthening appear to be more difficult
to analyze due to the complexity of the ARC4 cipher and the self-shrinking property of the
output.)

Since message-dependent variable-length external message expansion is a new technique,
further carefully examination must be performed before it can be used widely.

V. CONCLUSIONS

In this paper we presented a novel method for external message expansion in order to create
drop-in replacements of MD5 and other iterated hash functions. The original hash functions are
unaltered. We called our methodeXtremeShrinkingARC4-strengtheningor XSA-strengthening.
In XSA-strengthening, we modified theARC4 stream cipherto be used as a hash function
and a byte stream generator. We then used the idea of aself-shrinking generatorto generate

12

message-dependent variable-lengthnoise bytesto be inserted into the original input message and
a message-dependent variable-length block to be appended to the original input message to form
an expanded message. We use aparity accumulatorto create additional dependencies among
the inserted data. For short messages, we usemessage self-repeatfor additional protection.

XSA-strengtheninghas many attractive properties:
• it can be applied to any MD iterated hash function
• the underlying hash function is kept unaltered
• it is deterministic and simple to understand
• it has a fixed memory footprint and supports streaming data
• it has small computational overhead
• for a large input message, it expands the input message by a small amount

One disadvantage of XSA-strengthening is that for short input messages (less than256 bytes in
length), it expands the input message by at least100 bytes, on the average.

XSA-strengtheningis not intended to be a replacement of a well-designed cryptographic hash
function. However, we think that it can be a practical tool for strengthening and increasing the
useful lifetime of an MD iterated hash function. Since XSA-strengthening only expands the input
message externally, potentially it may be useful for non-MDiterated hash functions as well.

REFERENCES

[1] X. Wang and H. Yu, “How to break MD5 and other hash functions,” in Advances in Cryptology, EUROCRYPT’05,
R. Cramer, Ed. Springer-Verlag, 2005, pp. 19–35.

[2] X. Wang, Y. Yin, and H. Yu, “Finding collisions in the fullSHA-1,” in Advances in Cryptology, CRYPTO’05,
V. Shoup, Ed. Springer-Verlag, 2005, pp. 18–36.

[3] R. Rivest,RFC 1321: The MD5 Message-Digest Algorithm, http://www.ietf.org/rfc/rfc1321.txt.
[4] D. Eastlake and P. Jones,RFC 3174: US Secure Hash Algorithm 1 (SHA1), http://www.ietf.org/rfc/rfc3174.txt.
[5] I. Damgård, “A design principle for hash functions,” inAdvances in Cryptology, CRYPTO’89. Springer-Verlag,

1989, pp. 416–427.
[6] R. C. Merkle, “One way hash functions and des,” inAdvances in Cryptology, CRYPTO’89. Springer-Verlag,

1989, pp. 428–446.
[7] X. Lai and J. Massey, “Hahs functions based on block ciphers,” in Advances in Cryptology, EUROCRYPT’92.

Springer-Verlag, 1992.
[8] N. Kauer, T. Suarez, and Y. Zheng, “Enhancing the MD-strengthening and designing scalable families of one-way

hash algorithms,” in2005 Cryptographic Hash Workshop, Gaithersburg, Maryland, October-November 2005.
[9] M. Szydlo and Y. Yin, “Collision-resistant usage of MD5 and SHA-1 via message preprocessing,” in2005

Cryptographic Hash Workshop, Gaithersburg, Maryland, October-November 2005.
[10] J. Fortner,A Method for Pre-Processing Message Digest Output, (unpublished, see

http://csrc.nist.gov/pki/HashWorkshop/2006/program2006.htm#unaccepted).
[11] J. Coron, Y. Dodis, C. Malinaud, and P. Puniya, “Merkle-damgård revisited : How to construct a hash function,”

in Advances in Cryptology, CRYPTO’05. Springer-Verlag, 2005.
[12] W. Meier and O. Staffelbach, “The self-shrinking generator,” in Advances in Cryptology, EUROCRYPT’94,

A. de Santis, Ed. Springer-Verlag, 1994, pp. 205–214.
[13] K. Kaukonen and R. Thayer,A Stream Cipher Encryption AlgorithmArcfour, IETF Internet Draft,

http://tools.ietf.org/html/draft-kaukonen-cipher-arcfour-03, 1999.
[14] J. Hoch and A. Shamir, “Breaking the ICE - finding multicollisions in iterated concatenated and expanded (ICE)

hash functions,” inFast Software Encryption 2006, Graz, Austria, March 2006.
[15] NIST, Announcing the Advanced Encryption Standard (AES), FIPS 197, 2001.

