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ABSTRACT
Network intrusions have been a fact of life in the Internet for
many years. However, as is the case with many other types
of Internet-wide phenomena, gaining insight into the global
characteristics of intrusions is challenging. In this paper we
address this problem by systematically analyzing a set of fire-
wall logs collected over four months from over 1600 different
networks world wide. The first part of our study is a gen-
eral analysis focused on the issues of distribution, categoriza-
tion and prevalence of intrusions. Our data shows both a large
quantity and wide variety of intrusion attempts on a daily ba-
sis. We also find that worms like CodeRed, Nimda and SQL
Snake persist long after their original release. By projecting
intrusion activity as seen in our data sets to the entire Internet
we determine that there are typically on the order of 25B intru-
sion attempts per day and that there is an increasing trend over
our measurement period. We further find that sources of in-
trusions are uniformly spread across the Autonomous System
space. However, deeper investigation reveals that a very small
collection of sources are responsible for a significant fraction
of intrusion attempts in any given month and their on/off pat-
terns exhibit cliques of correlated behavior. We show that the
distribution of source IP addresses of the non-worm intrusions
as a function of the number of attempts follows Zipf’s law. We
also find that at daily timescales, intrusion targets often depict
significant spatial trends that blur patterns observed from in-
dividual “IP telescopes”; this underscores the necessity for a
more global approach to intrusion detection. Finally, we inves-
tigate the benefits of shared information, and the potential for
using this as a foundation for an automated, global intrusion
detection framework that would identify and isolate intrusions
with greater precision and robustness than systems with lim-
ited perspective.
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1. INTRODUCTION
Defending wide area networks from intrusion in the form of

port scans and attacks poses a significant, on-going challenge
for network operators. Using backscatter analysis to charac-
terize Denial-of-Service (DoS) activity in the Internet, Moore
et al. show that these intrusions are numerous and on the rise
[17]. In 2001, two widely reported Internet worms (Code Red
and Nimda) each infected hundreds of thousands of nodes in
less than a day and required countless hours to eradicate from
systems. Recent work by Staniford et al. suggests that the in-
trusion activity we have seen to date might only be the tip of
a very large iceberg and that significant steps are necessary to
counter these risks [23].

While methods and technology for securing networks against
intrusions continue to evolve, the basic problems are extremely
challenging for a number of reasons. First, the Blackhats who
perpetrate intrusions continue to find ingenious ways to com-
promise remote hosts and frequently make their tools pub-
licly available. Second, the size and complexity of the In-
ternet, including end host operating systems, make it likely
that there will continue to be vulnerabilities for a long time
to come. Third, sharing of information on intrusion activity
between networks is complicated by privacy issues, and while
there are certainly anecdotal reports of specific port scanning
methods and attacks, there is very little broad understanding
of intrusion activity on a global basis. Because of these chal-
lenges, current best practices for Internet security rely heavily
on word-of-mouth reports of new intrusions and security holes
through entities such as CERT [4] and DSHIELD [24].

The focus of this paper is the development of a quantitative
characterization of intrusion activity in the global Internet. To
our knowledge, this is the first study to broadly address this
problem using intrusion logs from firewalls at sites distributed



throughout the Internet. Specifically, our data was collected
in over 1600 networks world wide over a 4 month period by
DSHIELD.ORG. Entries in these logs consist of packets re-
jected by firewalls and portscan logs recorded by Network In-
trusion Detections Systems (NIDS -primarily Snort [19]). This
data set provides us with a unique perspective on global intru-
sion activity.

We investigated a range of fundamental features of intrusion
activity by evaluating our data along a number of dimensions.
Specifically, we assess the daily volume of intrusion attempts,
the sources and destinations of intrusion attempts, and specific
types of intrusion attempts.

Our results show the following:

• Volume: Daily intrusion attempts take place on an mas-
sive scale - as many as 3 million scans in our logs on a
single day - and in a bursty fashion.

• Distribution: Sources and destinations of intrusions from
an Autonomous System (AS) perspective are nearly uni-
formly distributed around the Internet. Furthermore, the
distribution of the number of scans per source IP versus
their overall rank follows a power law (Zipf’s Law [27]).

• Types: Worm activity (intrusion attempts on port 80)
varies between approximately 20% and 60% of all in-
trusion attempts and worm signatures from Code Red
and Nimda remain prominent today (over a year since
their original release). Non-port 80 intrusion attempts
make up a surprisingly large percentage of the daily vol-
ume. Decomposition of these indicates that while com-
mon scanning methods (eg. vertical and horizontal) are
indeed prevalent, other methods such as coordinated and
stealthy scans are also widely used.

Our next step was to use these results to project intrusion
activity to the entire Internet. We do this using multiple per-
spectives so that, in addition to getting a perspective on global
intrusion activity, we can assess the extent to which the intru-
sion activity seen by a single network is representative of intru-
sion throughout the Internet. Our projection method consists
of using all of our data, only data from /16 networks and only
data from /24 networks. Resulting projections have roughly an
order of magnitude difference respectively (decreasing). The
projection using the entire data set shows Internet wide intru-
sion attempts to be on the order of 25B per day over all ports.
A simple least squares fit through the data shows an increasing
trend for all projections.

Finally, we investigate the utility of sharing information be-
tween networks as a basis for a distributed intrusion detection
infrastructure. For example, we are interested in assessing the
number of logs required to establish particular source IPs as
“worst offenders”. We use an information theoretic approach
outlined in [2] to assess the marginal utility of intrusion in-
formation collected from multiple sites. In addition to worst
offenders, we also assess the utility of additional logs in un-
derstanding intrusion prevalence with respect to port targets.
We find that small random collections of intrusion logs are
not sufficient for gaining a consistent view of worst offenders
or port targets. This result combined with the Zipf result for
worst offenders indicate that while there is certainly potential

Figure 1: Global Distribution of Provider Autonomous
Systems. The dark and light squares respectively corre-
spond to ASes that are represented and not represented.
The grey lines or shading indicates direct connectivity be-
tween ASes

for sharing information between networks as a means for im-
proving security, a thoughtful approach to log aggregation is
likely to be required.

This paper is organized as follows. We describe studies re-
lated to this work in Section 2. In Section 3 we describe
the details of our data and our methods of analysis and Sec-
tion 4 provides background material on worms and scans. We
present results of our characterizations of fundamental fea-
tures of intrusions in Section 5 and extend those results to
the entire Internet in Section 6. Our discussion of the use of
shared information in a distributed intrusion detection system
is presented in Section 7. We summarize and conclude in
Section 8.

2. RELATED WORK
The work by Moore et al. is motivated by the question,

“how prevalent are denial-of-service attacks in the Internet to-
day?” [17]. Our work is similar in spirit although we address
the general question of intrusions and are not specifically fo-
cused on DoS activity. Staniford et al. report on recent worm
activity (Code Red, Nimda) in [23] and project the possibili-
ties of much more serious worm threats in the future. Cowie et
al. present a different perspective on the same work by exam-
ining hour long periods of “widespread instabilities” in global
BGP system in July and September of 2001 [5]. They describe
the idea of “worm induced traffic diversity” that is unlike other
normal traffic experienced by routers and is the primary cause
of the BGP instabilities.

Our work has implications in development and configura-
tion of network intrusion detection systems. Many such sys-
tems have been developed and deployed (eg. [18, 19]). The
standard approach for recognizing an intrusion is to create



Table 1: Sample log entries from DSHIELD portscan logs

Date Time Sub. Hash No: Scans Src IP Src Port Target IP Target Port TCP Flags
2002-03-19 18:35:18 provider2323 3 211.10.7.73 1227 10.3.23.12 21 S
2002-03-19 18:35:19 provider2323 16 211.10.7.73 1327 10.3.23.12 53 SF
2002-03-19 18:35:20 provider2323 1 211.10.7.73 1231 10.3.23.12 111 F
2002-03-19 18:35:21 provider2323 1 211.10.7.73 1331 10.3.23.12 22 SA

a rule-based description which is then used to configure the
NIDS. However, the task of accurately identifying new types
of intrusions remains quite challenging.

Other well known studies related to ours are the DARPA
Intrusion Data Sets from 1998 and 1999 [13]. These data
sets are typically used as training sets to test NIDS. They suf-
fer from being both old and synthetically generated, thus their
relevance to intrusion attempts of today should be questioned.
Our data (or a set like ours) could serve as a benchmark for
creating or validating training sets in the future.

The Honeynet Infrastructure is a unique “network” dedi-
cated to understanding the tools and activities of the Black-
hat community [10]. Their network consists of machines de-
polyed in the Internet with NIDS that are virtually unused.
Their lack of network use significantly reduces the possibil-
ity of false positives in the data they generate - every packet
received is considered suspect. The project publishes weekly
reports of recorded attack traffic and successful exploits.

Finally, there have been a number of recent papers on router-
based techniques for IP traceback [20, 21]. These techniques
all face considerable challenges in gaining operational deploy-
ment however they offer interesting possibilities for identify-
ing sources of intrusions.

3. INTRUSION DATA
We use a set of firewall logs of portscans collected over

a 4 month period from over 1600 firewall adminstrators dis-
tributed throughout the globe as the basis for our study. The
logs provide a condensed summary (lowest common denomi-
nator) of portscan activity obtained from various firewall/IDS
platforms. Some of the platforms supported include BlackIce
Defender, CISCO PIX Firewalls, ZoneAlarm, Linux IPchains,
Portsentry and Snort. This approach significantly increases the
coverage and reduces reliance on individual IDS’s interpreta-
tion of events. Table 1 illustrates the format of a typical low-
est common denominator log entry. The date and time fields
are standardized to GMT and the provider hash allows for ag-
gregation of destination IP addresses that belong to the same
administrative network.

Table 2 provides a high level summary of the data that was
used in our study. The dataset was obtained from DSHIELD.-
ORG – a research effort funded by SANS Institute as part of
its Internet Storm Center. DSHIELD’s objectives include de-
tection and analysis of new worms and vulnerabilities, noti-
fication to ISPs of exploited systems, publishing blacklists of
worst offenders and feedback to submitters to improve fire-
wall configuration. The data is comprised of logs submitted
by a diverse set of networks and includes 5 full Class B net-
works, over 45 full Class C sized networks and many smaller

Table 2: Monthly summary of studied DSHIELD logs

Month Number of Scans Number of Dest IPs
Aug. 2001 30 million 260,726
May. 2002 48 million 375,323
June. 2002 61 million 382,224
July. 2002 68 million 402,050

subnetworks. One of the highlights of this data source was
its utility and contribution in the detection and early analysis
of CodeRed. Figure 1 is a Skitter-based AS level graph that
shows the global distribution of the providers that submit to
DSHIELD. A Skitter graph provides a unique way of visual-
izing Autonomous Systems (ASes) based on their connectiv-
ity and geography without compromising provider identities.
There are three distinct regions in the graph and they corre-
spond to autonomous systems based in Europe, North America
and Asia Pacific in clockwise order. The grey lines or shading
indicates which ASes are directly connected to one another.
The dark and light squares correspond to ASes with repre-
sentative participants and non-participant ASes respectively.
The ASes closer to the center constitute the larger backbone
providers and telecommunication companies that have maxi-
mum connectivity while the stub ASes populate the periphery.
[11].

The lowest common denominator approach by DSHIELD
provides us with a unique, globally diverse and stable data
source. The simplicity and generality of this approach also
makes analysis straightforward. There are however some pit-
falls that need to be considered. The logs do not provide infor-
mation about packet headers, or what happens during active
connections. There is also a certain degree of vulnerability to
flooding by malicious users and by misconfigured firewalls.
For example local broadcast traffic and network games like
Half-life can result in many false positives. These instances
were filtered out from the dataset before analysis. Finally
NIDS systems may not be able to capture all packets during
a Denial of Service attack. However, spikes before and after
an attack should get recorded.

Finally, we need to consider portscans from spoofed sources.
Normally there is little benefit to an individual spoofed portscan
as the source does not get a response. A few specialized sit-
uations where a spoofed portscan by itself could prove ben-
eficial to a portscanner, like spoof-bounce, have been docu-
mented [7]. However, the best known motivation for spoofing
portscans is to create spurious background noise to hide the
real sources. By considering and correlating reports from mul-



tiple sources, the effect of the spoofed sources are marginal-
ized and real sources rise to the top. This works because in
reality, spoofed portscans form only a small fraction of all
recorded portscans. Thus, analyzing source IPs of portscans
can provide valuable insight into the geographic distribution
of malicious host subnets or stepping stones [26].

4. BACKGROUND

4.1 The Worms
In this section we provide background information on the

major Internet worms released over the last two years. We first
describe the major port 80 worms CodeRed I/II and Nimda.
This is important because port 80 scans still form the single
most dominant group of scans accounting for nearly 20% -
60% of all scans in any given day. Most port 80 scans observed
in the 3 month period between May 2002-June 2002 can be
attributed to either CodeRed or Nimda. The release date for
Nimda was Sep 18, 2001 and so the port 80 scans in the August
2001 dataset are exclusively CodeRed. We also describe the
SQL-Snake–a worm which affects Microsoft SQL Servers.

4.1.1 CodeRed I
CodeRed I exploited a well known Windows Internet Infor-

mation Server (IIS) buffer overflow vulnerability [12] and was
released on July 12, 2001. The worm was so named because it
defaced some web pages with the words “hacked by Chinese”.
The worm operates in two distinct phases. In its first phase,
the worm uses a random IP generator to search for vulnera-
ble targets. In the second phase (20-28th of every month),the
worm stops propogation and launches Denial of Service at-
tacks against the http://www1.whitehouse.gov website [3].

4.1.2 CodeRed II
Despite superficial similarities, CodeRed II is a completely

different worm that uses the same IIS vulnerability. The name
“CodeRed II” is derived from a string in the worm’s source
code. Unlike CodeRed I, this worm is not memory resident
and hence a reboot does not disinfect the machine. CodeRed
II’s propogation mechanism generates a random IP address
and a mask whose size determines the similarity between the
infected IP and probed IP. About 1/2 of the time CodeRed
II probes an IP in the same /24, and about 3/8 of the time
CodeRed II probes an IP in the same /16 and a random IP
remainder of the time. Finally CodeRed II installs a root level
backdoor that allows any other code to be remotely executed
[3].

4.1.3 Nimda
Nimda stands for admin spelled backwards. The algorithm

for target detection is not well known, but seems to follow
these rough probabilities: 50% an IP address with same first 2
octets, 25% an IP address with matching first octet and 25% a
completely random IP address [4].

Figure 2 shows the number of distinct sources scanning
port 80 during the 3 months in 2002 from our dataset. The
graph shows the predictable nature of the port 80 scans and
also very strong day of the month characteristics. The sharp
drop around the 19th of each month confirms that CodeRed I
is still very much alive. CodeRed I is supposed to self destruct

Figure 2: Daily number of distinct sources of port 80 scans,
May 2002-July 2002

at the end of each month. The hypothesis is that however, there
are enough machines with a sufficient clock offset that the vul-
nerable machines get reinfected producing this slow start like
growth between days 1-7.

4.1.4 SQL-Snake
The SQL-Snake was detected on May 20th 20021. This

worm scans for open MS-SQL 7 Servers which run on port
1433 by default and exploits machines that have the default SA
(Admin) account without an associated password. The worm
scans for IPs of the form A.B.C.D randomly on the following
IP ranges where: A = random2 number not equal to 10,127,172
or 192, B = 0-255, C = 1-255 and D = 1-254. The primary
function of the worm is to email passwords and related system
information to ixltd@postone.com [1, 14, 25].

4.2 Scan Types
We broadly categorize scans into four well known types

[22].

1. Vertical Scan - is defined as a sequential or random
scan of multiple (more than 5) ports of a single IP ad-
dress from the same source during a one hour period.
These are usually an attempt to survey which of several
well known vulnerabilities applies to this host and are
also known as strobe scans, based on one of the original
script-kiddie tools.

2. Horizontal Scan - is a scan from a single source of sev-
eral machines (5 or more) in a subnet aimed at the same
target port, ie. the same vulnerability. In this case the at-
tacker is searching for any machine that is running spe-
cific service and does not care about any single machine
in paricular. The attacker could be just recruiting peers
for launching larger distributed attacks.

3. Coordinated Scans - are scans from multiple sources
(5 or more) aimed at a particular port of destinations in
the same /24 subnet within a one hour window. These

1Not to be confused with the SQL Slammer worm released in
Jan 2003.
2Aside from avoiding certain class A-s, the first byte is also
weighted with some networks being scanned more frequently
than others.



Figure 3: Source AS distribution of Nimda/CodeRed(left), SQL-Snake(middle) and Non-Worm(right) scans.

are also called Distributed Scans [23]. These scans usu-
ally come from the more aggressive/active sources that
comprise several collaborative peers working in tandem.

4. Stealth Scans - are horizontal or vertical scans initi-
ated with a very low frequency to avoid detection. The
key parameters in this definition include the maximum
threshold (1 hour) and the minimum threshold for the
average interscan distance. An average interscan dis-
tance below the minimum threshold indicates that the
scan was not stealthy, ie. not intended to evade NIDS
systems. Two successive scans from the same source
that are seperated by more than the maximum interscan
distance are considered to be unrelated or parts of dif-
ferent scanning episodes.

5. INTRUSION CHARACTERISTICS
In this section, we first provide a high level summary of in-

trusion distribution in terms of the destination ports and the
attack sources. We illustrate instances where the top sources
depict striking correlated behavior. We then project the ob-
served scan rates over the entire IP space and try to identify
temporal trends. We identify the predictable and perisistant
behavior of the port 80 sources. Finally we investigate preva-
lence of spatial trends in the scanning behavior.

5.1 Port Distribution
Monitoring the destination port of intrusion attempts in the

Internet proves to be an effective method for detecting exploits
for new vulnerabilities and dissemination of new worms. The
cases of CodeRed I/II, Nimda and recent Opaserv (port 137)
are instances where the heightened scanning rates were ob-
served for several days before they were identified.

The daily scanning volume of the top 10 destination cate-
gories for the 3 months from May 2002 - July 2002 is shown
in Figure 4. Obviously the most signicant component of the
graphs are the port 80 scans from Nimda and CodeRedI/II. The
Linux Slapper worm (released later this summer) is not part
of this data. The visible spike in the port 1433 scans around
the 4th week of May is directly attributable to the release of
SQL-Snake worm [25]. The P2P entry comprises of scans
from Gnutella, Kazaa and EDonkey peers and the port 137

Figure 4: Scan rates for top 10 destination port categories
between May-July, 2002.

Figure 5: Persistance of port 80 scans between May-July,
2002 in /32 and /24 aggregates.

scans are dominated by Windows NetBios misconfiguration.
Of the non-worm scans, ssh (22), ftp (21), rpc (111), dns(53)
and icmp(0) tend to dominate. The scans from the Subseven
trojan (leaves worm) and scans to port 3128 (misconfigured
proxy servers used to redirect/hide surfing behavior) also fig-
ure in the top ports for the 3 months [24].

5.2 Source Distribution
One of the challenges in a study of the sources of the in-

trusions is to account for the disparities in the scanning be-
havior of self propogating and non-worm traffic. To simplify
we classify scans into three categories: port 80, 1433 and the
remaining non worm traffic. We filtered out traffic from Sub-



Figure 6: Log-log plot of source IP rank versus number of
monthly scans for each of the four months.

Figure 7: Daily scan rate of top 100 non-worm sources in
May, 2002 as compared with all sources.

Figure 8: Cluster of 8 out of top 20 sources in August, 2001
with very similar on-off behavior.

Figure 9: Cluster of 8 out of top 20 sources in June, 2002
with very similar on-off behavior.

Figure 10: Cluster of 4 out of top 20 sources in May, 2002
with similar on-off patterns.

seven and noise due to Windows NetBios and the peer-to-peer
scans. All future references to non-worm scans use this fil-
tered dataset. Figure 3 shows the global distribution of au-
tonomous system level sources of port 80, port 1433 and the
non-worm scans for the month of June 2002. A snapshot from
the Oregon route views table was used to convert source IP ad-
dresses to AS numbers [15]. These graphs serve to illustrate
the global reach and uniformity of attack sources (also victims
in the former two cases) in each category. It is apparent that
the distribution of the SQL Snake victims even at its peak, was
less dense in comparison to port 80 or other non-worm traffic.
Nevertheless it was responsible for a significant portion of all
recorded scans.

5.2.1 Persistence of Worm Activity
Another interesting aspect of worm behavior is the persis-

tence of attacks. In particular, we wanted to understand how
long a subnet remained infected. We compute the duration of
port 80 scans during the 3 month period based on aggregates
of /24 and /32. The motivation behind looking for /24 matches
comes from CodeRed II’s and Nimda’s affinity towards local
targets. The half lives of the 3 categories are 18 days for /24
matches and 6 hours for /32 match. The /24 matches are biased
by individual sources that send only a single portscan and do
not really indicate quick disinfection. The graph in Figure 5 re-
veals an almost linear relationship between duration and num-
ber of infected /24 subnets with a very small slope. This indi-
cates that while a majority of subnets become Nimda/CodeRed
free in about 18 days, significant number of subnets continue
to be infected for extended periods.

5.3 Top Sources
Isolating and understanding behavior of worst offenders (in

terms of source IP) is crucial to defending networks. We focus
primarily on the non-worm intrusions in this section. The self-
propogating nature and local affinity of worm traffic makes a
similar analysis less meaningful and more complicated. Fig-
ure 6 plots the rank of each source IP against its number of
scans (ie. popularity) on a log-log scale. The decreasing lin-
ear slope of this plot indicates a power-law distribution which
leads us to conclude that “worst offender” IPs follow Zipf’s
Law [8, 27]. Many other phenomenon in the Internet have a
similar characteristic. This indicates that very few sources are
in fact responsible for generating a significant fraction of all
non-worm scans that are observed. Figure 7 plots the daily



Figure 11: Distribution of coordinated, horizontal and ver-
tical scans for the month of June, 2002.

Figure 12: Distribution of coordinated, horizontal and ver-
tical scan episodes for the month of June, 2002.

scan volume from the top 100 sources (out of 261K) along
with the total scans and further supports this results. The graph
shows that the top sources which are responsible for rougly
half of all non-worm scans, also account for most of the vari-
ability that is exhibited.

Another way to consider worst offender behavior is to fo-
cus on the scans emanating from the top 20 sources for each
month. Observing the daily on/off patterns of these top 20
sources during the course of each month reveals clusters of
correlated behavior. Such clusters were observed prominently
in the top 20 sources of each of the four months under con-
sideration. Figures 8 and 9 show clusters from the top 20
sources from August 2001 and June 2002. These sources are
“on” during the same days of the month with similar levels of
activity and bear little locality in IP space. Figure 10 captures
a set of four IPs that display similar staggering behavior but
on different days. The similarity in the actual number of scans
during the on periods is striking. This points to an identical
attack or an attack using the same tool lauched from disparate
sources on different days.

These results lead us to conclude that such attacks are in fact
fairly common, and that blacklisting worst offenders would
be an effective mechanism of defending against non-port 80
intrusions. We further conclude that instances of collaborative
clusters can be effectively isolated and should be investigated
with greater vigor.

5.3.1 Identification of Scan Types
Figures 11 and 12 show the daily distribution of the three

scan types during the month of June 2002. This indicates that
horizontal scans account for 60-70% of all non-worm scans.

Figure 13: Distribution of Stealth scans in June, 2002 with
minimum interscan thresholds of 30 and 180 seconds.

Another surpising revelation is that a large proportion of the
daily scans are coordinated3 or come from distributed sources.
The coordinated scan rate also seems much more tightly tied to
the number of coordinated scan episodes with the ratio of 100
scans per epsode. The most common ports scanned included
port 111 (RPC), port 53 (DNS) and scans for alternate web-
server ports like 8000 and 8080. Although horizontal scans
are more common than vertical scans, there are fewer hori-
zontal scan episodes than vertical scan episodes. Figure 13
shows daily distribution of observed stealth scans with mini-
mum thresholds of 30 and 180 seconds. Stealthy scans are not
uncommon, however only makeup a small percentage of all
vertical and horizontal scans. Vertical scans seem to be much
more likely to exhibit stealthy behavior than horizontal scans.

5.4 Network Telescopes
Network Telescopes are defined as large chunks of unused

but globally routable IP space. Passive monitoring of tele-
scopes serve as a useful mechanism for measuring and under-
standing Internet attack behavior [16], especially worms like
CodeRed and Nimda. We examine their potential for charac-
terizing the patterns of non-worm scans in the larger Internet.
Figures 14 and 15 show the observed daily scan rates from
an entire Class B with respect to the overall scan rates for both
non-worm and port 80 scans. They reconfirm that for model-
ing port 80 scans even a single Class B telescope works rea-
sonably well. However the non-worm traffic modeled from the
same telescope exhibits significant variability unlike the global
rates. This suggests that non-worm traffic has inherent spatial
components that may only be able to be captured effectively
only from a globally distributed set of telescopes.

6. GLOBAL PREVALENCE

6.1 Projection
Scanning patterns seen in the Internet have been highly dy-

namic especially over the last couple of years with the emer-
gence of novel and more sophisticated worms. One of the in-
triguing questions that we would like to answer is how the vol-
ume of scans have changed over the last year? To address this
question, we project the daily scans observed in our dataset to
the larger Internet. We do this by simply taking the “average
scans per IP” for our set of destination IPs and then multi-

3as per our definition in section 4.2.



Figure 14: Daily scan rate of non-worm scans observed
from a Class B telescope with respect to overall rate, June
2002-August 2002.

Figure 15: Daily scan rate of port 80 scans observed from
a Class B telescope with respect to overall rate, June 2002-
August 2002.

plying that by the number of IPs in the entire IP space4. We
assume uniformity, but do not test for it. That is, we assume
that since our set of provider networks are reasonably well dis-
tributed (both geographically and over the IP space), our per-
spective reflects what is seen over the larger Internet. This
projection indicates daily scan rates as high as 25B/day.

We perform similar projections using /24 and /16 aggregates
and try to discern trends via linear fits. The /16 and /24 aggre-
gates provide very conservative estimates of the observed scan
rates due to sparse network representations. One motivation
behind them is to account for possible IPs that may not re-
ceive any scans during an entire day. Figures 16 and 17 show
the results for port 80 and non-worm scans. The port 80 scan
rates show a decreasing trend which is due to high levels of
CodeRed incidences in Aug 2001. The rates between May and
August 2002 (not shown explicitly in the figure) are relatively
steady with a very small upward slope. The non-worm scan
rates however show an increasing trend. The average daily
number of scans over the IP space jumps from 6.5 B scans to
8.2 B, an increase of over 25%.

7. IMPLICATIONS OF SHARED INFOR-
MATION

A number of recent papers and proposals address the con-

4Alternately we could have obtained the portion of routable
IP space from a BGP table. While the gross volume of scans
might be slightly reduced, we expect the trends to be pre-
served.

Figure 16: Projection of port 80 scans Aug 2001-July 2002,
over /32, /24 and /16 aggregates

Figure 17: Projection of non-worm scans Aug 2001-July
2002, over /32, /24 and /16 aggregates

cept of developing an infrastructure that would pool resources
in order to more rapidly and more effectively respond to at-
tacks and intrusions [6, 10, 22]. There are many issues in-
volved in the creation of such an infrastructure, not the least
of which is understanding its potential for success. Given the
fact that there is likely to be little synchronization of times-
tamps between daily firewall logs in our data set, we did not
attempt to evaluate how rapidly attacks and intrusions could
be identified if data were collected in central repository in real
time from sites distributed across the Internet – we leave that
for future work. Our data does, however, lend itself to evalu-
ating other aspects of developing composite views of intrusion
activity and we explore two examples of these in this section.

7.1 An Information Theoretic Approach
Exploring the extent of refinement of perspective provided

by additional data is a standard notion in information theory.
Relative entropy is a measure of the distributional similarity
between two variables [9]. This measure is commonly esti-
mated using the Kullback-Leibler distance metric which was
extended in [2] to measure the marginal utility of adding addi-
tional experimental results to an aggregate data set of network
topology measurements. Our interest is in understanding how
the addition of intrusion logs to an aggregate data set improves
the resolution of identifying “worst offenders” and the preva-
lence of scans of particular ports. The marginal utility metric
will quantitatively express the information gained by the addi-
tional logs.

A framework for marginal utility evaluation is presented in



Figure 18: Utility of additional subnets for detecting worst
offenders

[2]. The framework considers a set of n identical (ie. aimed at
discovering a common property) experiments S1, S2, ..., Sn.
In our case, these experiments would be intrusion logs submit-
ted by distinct sites. Marginal utility is defined as the reduction
in uncertainty resulting from the next experiment added to the
aggregate set. Two alternatives for calculating marginal util-
ity are presented: one which considers the reduction in uncer-
tainty in an online manner and the other in an offline manner.
The essential difference between the two is that the offline met-
ric considers marginal utility from the perspective of the set of
all n experiments. We select the offline metric for analysis
since, as stated above, we are not considering issues related to
the order in which individual logs are submitted.

The formal definition of marginal utility of an experiment
Sn is defined to be Um(Sn) and is given by the following
equation:

Um(Sn) =
�

∀i

Pr(sm
i ) log(

Pr(sm
i )

Pr(sn
i )

) (1)

where i ranges over all possible outcomes and Pr(sj

i ) is
the probability associated with outcome si after the conclusion
of experiments S1, S2, . . . , Sj , and m is the total number of
experiments conducted.

7.2 Identification of Worst Offenders and
Prevalence of Target Ports

Our experiments to evaluate the marginal utility of intrusion
log sharing focuses on two issues: the identification of worst
offenders and the identification of ports (non-port 80) that are
most frequently scanned. Our intent is to examine this issue
in a general sense. To that end we conducted the experiments
by selecting a single day at random from our data set. We then
select logs from 100 /16’s at random and 100 /24’s at random
to determine how many logs are required to get a consistent
perspective on offenders and intrusion targets. Our analysis of
network telescopes in Section 6 gives us the intuition that the
aggregation of logs from a non-trivial number of sources, will
be required to gain a representative perspective on these two
issues.

The graph in Figure 18 shows the marginal utility of addi-
tional logs for identifying worst offenders. For this analysis
(and the analysis of port targets), we ordered the logs by the
number of scan entries. If the distribution of information in the
logs is relatively stable, then this ordering should provide a se-
quence of marginal utility measures that follow a decreasing

Figure 19: Utility of additional subnets for detecting top
target ports

trend. It can be seen in the figure for the larger /16 networks,
that this is indeed the case. Beyond the aggregation of about 35
intrusion logs, almost no additional information is added. The
plot for the /24 networks tells a different story. Non-negligible
marginal utility metrics exist over a great deal of the graph
indicating that aggregations more than 100 /24’s may be nec-
essary to get a clear view of worst offender distributions.

The results for the marginal utility of identifying target ports
is somewhat different. As can be seen in Figure 19, there is
a good deal of variability in marginal utility metrics for both
/16’s and /24’s for log aggregations under 30. However, be-
yond 40, both exhibit fairly small marginal utility metrics indi-
cating that stable perspectives on port targets may be achieved
with relatively small numbers of logs.

8. SUMMARY AND CONCLUSION
In this paper we present a broad, empirical analysis of In-

ternet intrusion activity using a large set of NIDS and firewall
logs collected over a four month period. We found daily intru-
sion activity as seen in our data to be highly variable ranging
from between about 1M to 3M scans per day. Examination of
source IPs for these scans shows that they are widely disbursed
across the autonomous system space, and that the distribution
of attempts per source IP follows a power law. Our breakdown
of scan types shows not only the predictably large amount of
worm activity, but also a large amount of scanning directed
toward ports other than 80. We find that while 60-70% of
all non-worm scans are horizontal scans, the daily number of
horizontal scan episodes is typically lower than vertical scan
episodes.

To gain insight into the global nature of intrusions we used
our data to project activity across the Internet. We used three
different methods in this regard; considering first our entire set
of data, then just /16 networks then just /24 networks. We find
total intrusion activity to be as high as 25B per day and that
non-port 80 scans increased by approximately 25% over our
measurement period.

We also presented a high level information theoretic evalu-
ation of the potential of using data shared between networks
as a foundation for a distributed intrusion detection infrastruc-
ture. Our analysis indicates that small collections of logs from
smaller networks may not be sufficient to identify either worst
offenders or most popular port targets for attacks.

Our analysis has a number of implications. First, intrusion
activity takes place on a massive scale throughout the Internet



and it is on the rise –network admininstrators should beware.
Second, the worst offenders typically depict coordinated be-
havior and are responsible for significant fraction of all scan-
ning activity. This is a strong argument for developing better
blacklists and employing appropriate ingress filtering. Third,
while current firewall and NIDS systems provide useful clues
about attack patterns their views are limited by their vantage
points. There is significant benefit to be acheived by collabora-
tion, however this benefit is sensitive to the size of the peering
group and its diversity.

Next steps in this work will be to attempt to refine the means
by which intrusion data used in a distributed coordinated in-
frastructure. We are also interested in how effectively intrusion
data collected in real time can positively identify new intrusion
exploits in the Internet.
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