A Secure and Scalable Wide-Area Upload Service

[Appeared in Proceedings of the 2nd International Conference on Internet Computing, 2001]

William C. Cheng Cheng-Fu Chou

L eana Golubchik Samir Khuller

Department of Computer Science, University of Maryland at College Park
{william,chengfu,leana,samir} @cs.umd.edu

Abstract In arecent paper, we introduced a framework
termed Bistro to facilitate the building of scalable wide-
area upload applications. An example of an important
upload application is the submission of personal and
business income tax forms over the Internet.

Our intent for deploying the Bistro platform is not
to rely on adding resources (such as hosts) to the Inter-
net. Rather, we envision that people will want to install
Bistro services on their hosts on the Internet and con-
tributetheir resourcesto the overall Bistro infrastructure
because it will improve their performance aswell. Snce
anyone will be allowed to install a Bistro server, secu-
rity becomes a great concern since sensitive information
such as income tax forms will be uploaded through the
Bistro system. In this paper, we describe the basic frame-
work and present a security protocol for the Bistro sys-
tem aswell as discussits security properties.

Keywords:
loads

1 Introduction

Hot spots are a major obstacle to achieving scala-
bility in the Internet. At the application layer, hot
spots are usually caused by either (a) high demand
for some data or (b) high demand for a certain ser-
vice. This high demand for data or services, is typ-
ically the result of a real-life event involving avail-
ability of new data or approaching deadlines; there-
fore, relief of these hot spots may improve quality
of life.

In this paper, we focus on secure upload appli-
cations that have the following characteristics. The
real-life event which causes the hot spots imposes
a hard deadline on the data transfer service. Each
transfer corresponds to a relatively large file size,
e.g., as in IRS tax form submissions or conference
paper submissions®. And, no interactivity is re-

Internet Services, Security, Scalable Up-

1A basic US IRS tax form 1040 is on the order of 100
KBytes [3], business tax forms are much larger, and a typi-
cal paper submitted to a conference is on the order of 1 to 2
Mbytes.

quired for uploading data, i.e., applications such as
e-commerce are excluded.

For this class of applications, we observe that the
existence of hot spots in uploads is largely due to
approaching deadlines. The hot spot is exacerbated
by the long transfer times. This is depicted in Fig-
ure 1. We also observe that what is actually required

Figure 1. Depiction of a single upload event.

is an assurance that specific data was submitted be-
fore a specific time, and that the transfer of the data
needs to be done in a timely fashion, but does not
have to occur by that deadline (since the data is not
consumed by the server right away).

In a recent paper [1], we proposed (at a very high
level) to break the original deadline-driven upload
problem into: (a) a real-time timestamp subprob-
lem, where we ensure that the data is timestamped
and that the data cannot be subsequently tampered
with; (b) a low latency commit subproblem, where
the data goes “somewhere” and the user is ensured
that the data is safely and securely “on its way” to
the server; and (c) a timely data transfer subprob-
lem, which can be carefully planned (and coordi-
nated with other uploads) and must go to the orig-
inal destination. This means that we have taken a
traditionally synchronized client-push solution and
replaced it with a non-synchronized solution that
uses some combination of client-push and server-
pull approaches. Thus, we eliminate the hot spots

by spreading most of the demand on the server over
time; this is accomplished by making the actual data
transfers “independent” of the deadline. In order
to construct a general architecture for implement-
ing upload applications, we introduced Bistro, an
application-layer platform which implements a set
of primitive services, such as timestamping, secu-
rity, commit, and data transfer. This platform allows
us to build scalable wide-area upload applications.

Our intent for deploying the Bistro platform is not
to rely on adding resources (such as hosts) to the In-
ternet. Rather, we envision that people will want to
install Bistro services on their hosts on the Internet
and contribute their resources to the overall Bistro
infrastructure because it will improve their perfor-
mance as well. The existing bistros will discover the
new installations and integrate them into the Bistro
infrastructure. Since anyone will be allowed to in-
stall a Bistro server, security becomes a great con-
cern since sensitive information, such as income tax
forms, will be uploaded through the Bistro system.

In this paper, we describe our basic framework
and present a security protocol for the Bistro system
and discuss its security properties. An important
consideration in designing this security protocol is
not only the strength of its security characteristics
but also the performance and scalability character-
istics of the resulting system. Hence, the main con-
tribution of this work is a security protocol which
provides the needed integrity, privacy, authentica-
tion, and non-repudiation for our upload framework
over untrusted intermediaries which are an integral
part of our Bistro framework. An important charac-
teristic of this protocol is that it does this under the
constraints of performance and scalability require-
ments.

1.1 Basic Framework

As stated in [1], our approach is to break the upload
problem into the following subproblems: (a) times-
tamp, (b) commit, and (c) transfer, and then design
and develop the Bistro architecture which imple-
ments solutions to these subproblems. Given this
breakup into subproblems, the original data trans-
fer is now done using two data transfers (1) from
a client to one or possibly more hosts on the Inter-
net, which we will refer to as bistros, and then (2)
from one or more bistros to the server. This flow of
data is illustrated in Figure 2. The timestamp has to
be produced before the deadline; the commit has to
be performed with low latency, and the data transfer
from a bistro to the server has to be done in a timely

Destination bistro———__
(i.e., Server) *

Bistro System

Figure 2: A single upload with Bistro.

manner. The exact constraints on all these opera-
tions are again a function of the requirements of the
particular upload application.

Note that Figure 1 depicts the current state of
the upload problem which is implemented using
a collection of one-to-one independent communi-
cations. Although Figures 1 and 2 only depict
a single upload application, it is understood that
the bistros may be shared by many simultaneous
upload activities/applications, each with different
deadlines, characteristics, and requirements. Coor-
dination of multiple simultaneous upload applica-
tions is an open research problem. The ability to
share an infrastructure, such as an infrastructure of
proxies or bistros, between a variety of wide-area
applications has clear advantages which have been
outlined in [1].

In [2], we showed the performance advantages
of the Bistro framework. We believe that the Bistro
framework is a very flexible solution that takes ad-
vantage of available resources in the system and the
network to the best extent possible.

2 A Secure and Scalable Architec-
ture

As we noted in [1], adding intermediaries (i.e.,
bistros) in the data transfer has obvious security im-
plications: clearly, bistros should not be allowed to
corrupt the data in transit in any way or even read
it. In general, the set of security properties desirable
for an upload service are: (1) Integrity: The data
cannot be changed in transit by any principal. (2)
Privacy: For some transfers, it may be necessary to
ensure that the data is encrypted and cannot be in-
terpreted by intermediaries on the transfer path. (3)
Authentication and non-repudiation: Since the des-
tination now receives data from nodes that are not
the source of the data, it may be necessary to authen-
ticate the source of the data. The mechanisms em-

ployed to authenticate the data should also be able
to discriminate “replays” by malicious bistros and
provide non-repudiatable transfer.

All of these properties are, in fact, desirable for
many data transfer applications and many crypto-
graphic techniques have been developed for imple-
menting these properties [4, 5, 6, 7]. Usually, these
techniques assume a powerful adversary capable
of intercepting and changing messages in transit.
This model is immediately applicable to the Bistro
framework, with malicious bistros being the adver-
saries. Thus, we can use existing cryptographic
techniques (e.g., timestamping and bit-commitment
[6]) to implement all these security properties for
Bistro transfers. Below, we detail our security pro-
tocol for Bistro.

2.1 Setup

Here we outline the security protocol for operating
a set of independent bistros to handle a set of inde-
pendent upload meta-events. We define an upload
meta-event (or simply a meta-event) to be a Bistro
counter-part of a real-life event?. Our solution is
similar to the timestamped certified mail strategy of
a postal service. In the public postal service, a post
office is a trusted entity. The recipient trusts that a
timestamp put on by a post office is accurate and
that the content of the letter is unaltered after the
timestamp has been issued. The main difficulty we
need to overcome is the problem that if anyone can
setup a post office, how can a “trusted” timestamp
still be produced for purposes of certified mail? This
is analogous to our situation since anyone can setup
a bistro. A simple solution is to require the users to
obtain a timestamp from the server which is hosting
the specific meta-event (which we call the destina-
tion bistro).

For simplicity, we assume that all bistros have
identical software installed, which is referred to as
server software. We also assume that a submission
software package, which is referred to as client soft-
ware, is available to all users who wish to submit
data through the Bistro system. It is our intent to
make all Bistro software publically available in both
source and binary form.

Every bistro is identified by a (host,port) pair.
The server software may include code for more than
one public key crypto system. For every public
crypto system, a bistro generates a pair of public and

2The term event is often used in the context of a distribute
system as an atomic entity. Here we use the term in a broader
context.

private keys for a set of possible key lengths. All the
public keys are published and available through an
HTTP connection. These keys will be used below
to authenticate the bistros. For bistro X, we use
Ky pub and Ky iy to denote a pair of public and

private keys, respectively (the corresponding crypto
system and key length are left out for clarity).

2.2 Meta-event Creation

The procedure for someone (e.g., IRS, or a program
chair for a paper submission application) to declare
a meta-event, such as income tax forms submission
or conference paper submission, is for him/her to
visit a bistro, with a web browser (or custom soft-
ware) and create a meta-event. Let us denote this
meta-event by ~. This person will be known as
the Meta-event Owner for meta-event «, and the
bistro to which he/she connects will be known as the
Meta-event Destination bistro (or simply, the desti-
nation bistro — this can be just the original server
with Bistro software installed) for meta-event +.
Please see Section 2.6 regarding the discussion on
how to choose a destination bistro. The following
steps occur during meta-event creation:

(1) For the v meta-event, the meta-event owner
provides the following information to the desti-
nation bistro in a secure way (such as through
HTTPS, Diffe-Hellman, etc.): (a) a deadline for
the meta-event; (b) the desired security properties
for the upload (such as which public/private key
crypto system to use and key lengths); (c) a user-
ID and a password for future administrative access
to the destination bistro for this meta-event; and
(d) other administrative information about the meta-
event owner, such as e-mail address. This informa-
tion is stored in the private database of the destina-
tion bistro.

(2) The destination bistro creates a Meta-event
Identifier (or simply, EID,). This EID., encodes the
following information: (a) the destination bistro’s
host name and port number; (b) a unique meta-
event number (which can be generated sequentially
on this destination bistro); and (c) the security prop-
erties of the upload. Please note that below we will
simply use EID to denote EID,, for clarity.

(3) The destination bistro generates a pub-
lic/private key pair Kgub and Kgriv according to
the EID. Please note that we will also drop the «
superscripts for clarity.

(4) The destination bistro records EID in its pri-
vate database and publishes EID and Kpub-

(5) At this point, the meta-event owner can pub-
licize EID and Kpp in the announcement of the
real-life upload event that corresponds to the meta-
event -y (e.g., in a call for papers).

2.3 Client Submission

A client would use the Bistro submission software
package provided as part of the Bistro system to
submit data 7" for a meta-event identified by EID.
The following steps are used to accomplish the ini-

Destination bistro >\~ <~ _Bistro
) (i.e., Server) System
\

//b/i stro X D EEKpriv(h(T)10—)
_[h(T),email addr] K

~ et
- - -_ _~

aclient

Figure 3: Obtaining a timestamp.

tial exchange between the client software and the
destination bistro:

Step 1. This is the timestamp step and is depicted
in Figure 3.

(1a) The client-side submission software prompts
the user for the file name that identifies 7" and the
user’s email address.

(1b) The client-side submission software com-
putes a message digest based on the method spec-
ified in the EID, e.g., using SHA-1, for T and pro-
duces h(T).

(1c) It then sends h(T) and the user’s email ad-
dress to the destination bistro. This is depicted in
Figure 3.

(1d) The destination bistro generates a timestamp
ag.

(le) The destination bistro concatenates h(T)
with ¢ and encrypts it with the private key of the
meta-event, Ky, and sends £ = Ky, (h(T),0), @
digitally signed upload ticket, back to the client-side
submission software. This is also depicted in Fig-
ure 3. At the same time, destination bistro records
h(T), user’s email address, o, and the upload ticket
in its private database. (It may also suggests a list of
candidate bistros for the commit step below. How-
ever, the problem of bistro selection is beyond of the
scope of this paper.)

(1f) Upon receiving the upload ticket, the user
can authenticate the destination bistro since the up-

load ticket is digitally signed by the destination
bistro. The user can use the publically available
K pub to decrypt the upload ticket to make sure that
the message digest has not been corrupted and that
the timestamp was given before the deadline (based
on the server’s clock).

Step 2. This is the commit step and is depicted in
Figure 4.

Destination bistro =\~ < _Bistro
(e, Server) /7,“3 System

\

I/Bi stro X P \
\\ pEKX,priv(EI Dvaub(’Kses’E.))
[EIDvaub(szE)vaes(T)] - T ~__-7 ’

\Oaclient

Figure 4. Commit.

(2a) The client-side submission software gener-
ates a session key, Kses, according to EID and en-
crypts T' with Kseg using a symmetric-key crypto-
graphic system standard specified in the EID, e.g.,
using triple-DES. The encrypted text is denoted by
Ksges(T). It also concatenates Kses with ¢ and
encrypts it with the public key of the meta-event,
Kpub' and sends [EID, Kpub(Kses,f), Kses(T)]
to any bistro (let us call this bistro X).

Note that Kpub(Kses) can be sent to the des-

tination bistro in step (1c) above if Kges is gen-
erated earlier. We choose to delay the sending of
the session key for the following reasons. (1) We
would like to minimize the amount of data trans-
mitted in step (1c) above. Since the message length
of Kpub(Kses) is relatively small, this choice is not
significant. (2) For fault tolerance reasons, we may
want to send multiple copies of the encrypted text to
multiple bistros. In this case, we can generate differ-
ent session keys to generate different copies of the
encrypted text to reduce the chance that the session
key is compromised.

Note that, the identity of bistro X can be hard-
coded by the client-side submission software or be
specified using a configuration file or be specified
through appropriate setting of environment vari-
ables. It can also be chosen from the list of candi-
dates from step (1e) above or determined using any
of the policies mentioned in [2].

(2c) Finally, bistro X issues a receipt, p =

KX,priv(EID’Kpub (Kses,§)), to the client-side
submission software and stores p with the submis-
sion, i.e., with Kges(7T'), in its temporary storage.
(The choice of K X,priv depends on the crypto sys-
tem and key lengths specified in EID.) It also sends
p to the destination bistro notifying the destination
bistro that it has a submission for EID. The destina-
tion bistro records X and p in its private database.

24 Data Transfer
The following steps are used to transfer the submis-
sion to the destination bistro:

(1) After the deadline corresponding to EID has
passed, the destination bistro reviews all records
stored in its private database and starts retrieving
submissions that correspond to EID from all the
bistros that have sent receipts for this meta-event.
The retrieval can be done sequentially if the desti-
nation bistro has limited capacity (in terms of one
or more of its resources), or the destination bistro
can retrieve multiple submissions in parallel, based
on its capacity considerations.

(2) After a submission is successfully retrieved
from a bistro (by the destination bistro), that bistro
can delete the submission from its temporary stor-
age.

2.5 Retrieval by Meta-event Owner

The following steps are used by a meta-event owner
to retrieve the submission from the destination
bistro:

(1) Using the same method as in step (1) in Sec-
tion 2.2, the meta-event owner connects to the desti-
nation bistro and presents the EID. The destination
bistro prompts the meta-event owner for a user-1D
and a password.

(2) If the user-1D and password match, the desti-
nation bistro uses the event private key, Ky, t0
decrypt Kpub(Kses,g) to obtain the session key
Kses and the upload ticket £. Then it can use the
session key to decrypt the submission and obtain 7.
It can easily verify that the upload ticket is genuine
by recomputing A(7T') and &.

(3) The text is sent to the meta-event owner via
the secure connection.

(4) A user is notified by the destination bistro
through email whether or not his/her submission
was successfully received. In the case of a success-
ful upload, the user can delete his/her copy of the
submission. In the case that the submission was lost
or corrupted, the user can simply use the client soft-
ware to generate a new session key, K &g, and send

[EID, Kpub(KékeSa €), K&es(T')] directly to the des-
tination bistro.

2.6 Discussion

In this section, we focus on the security properties
of Bistro’s security protocol presented above. How-
ever, we first note that the security considerations
of our protocol are also constrained by the desired
scalability and performance characteristics which
motivated our work on wide-area uploads in the first
place. Hence, we first briefly mention these scala-
bility and performance characteristics, as achieved
by our system in conjunction with the security pro-
tocol.

Specifically, we believe that our solution is scal-
able for the following reasons. During the client
submission process, only the obtaining of the up-
load ticket & step must occur before the deadline,
which greatly reduces the network traffic to the des-
tination bistro around the time of the deadline. The
traffic due to the submission of the “real” data, i.e.,
from other bistros, can be spread over time after the
deadline and controlled by the destination bistro.
This makes the submission of the “real” data “inde-
pendent” of the deadline. We note that the service
provided by the Bistro system is a secure upload ser-
vice. Currently, secure upload is achieved through
the use of HTTPS, which has comparable encryp-
tion overhead as Bistro. This also results in a greatly
improved response time experienced by the user,
due to the parallelism provided by the bistros and
the potential closer proximity of the bistros. These
performance issues are studied quantitatively in [2].
We now proceed to the discussion of security prop-
erties.

Who Should Trust Whom? Note that the meta-
event owner can choose any bistro as the destina-
tion bistro. However, the meta-event owner needs
to trust the destination bistro to give out timestamps
and decrypt data. Since anyone is allowed to install
a bistro (and possibly modify the bistro software),
the meta-event owner should only choose a bistro
that he or she trusts! This means that if there is a
bistro within his/her administrative domain, he/she
will most likely choose that bistro. If none exist,
the bistro software can be easily downloaded and in-
stalled or he/she can choose a reputable bistro (such
as the one in the administrative domain of some-
one he/she trusts). Note that, this chosen destina-
tion bistro needs to be trusted for the meta-event in
question only, i.e., it can be considered an untrusted
intermediary for all other meta-events which do not

choose it as the destination bistro. Further note
that only encrypted data passes through untrusted
bistros.

Why a Pair of Public/Private Keys per Meta-
event? In step (3) of Section 2.2, we use a pair of
public/private keys on a per meta-event basis. An
alternative would be to use the same pair of pub-
lic/private keys for all meta-events on the destina-
tion bistro with the same security requirements, as
specified in the EID. However, the security proper-
ties of some public key crypto systems can benefit
significantly from generation of a new pair of pub-
lic/private keys for each meta-event [6].

Why not Just Use the Event Owner’s Pub-
lic/Private Keys? In step (3) of Section 2.2, we use a
pair of public/private keys on a per meta-event basis
generated by the trusted destination bistro. An alter-
native would be to use a pair of public/private keys
belonging to the meta-event owner, if he/she wishes
to use this alternative. There are several problems
with this alternative some of which are as follows.
The crypto system used by the meta-event owner
may not be supported by the Bistro system. Fur-
thermore, step (1e) of Section 2.3 requires the pri-
vate key corresponding to the meta-event. There-
fore, if the meta-event owner’s keys are to be used,
either the meta-event owner must expose his/her pri-
vate key to the destination bistro, or special soft-
ware needs to be provided for the meta-event owner
to generate the upload ticket needed in step (1e) of
Section 2.3. In addition, if the meta-event owner’s
system is behind a firewall further complications
arise. Moreover, the meta-event owner’s system will
have to remain connected during this entire process.

Can a Dedtination bistro Be Mirrored? If the
meta-event owner expects the uploads to swamp
the destination bistro during the timestamping pro-
cess, he/she can designate multiple trusted desti-
nation bistros for the meta-event. This can be ac-
complished easily with mirroring. For instance, the
meta-event owner can choose an additional bistro by
connecting to a trusted bistro (as in step (1) in Sec-
tion 2.2) and sending a mirroring request for EID.
This bistro can then prompt the user for a user-ID
and a password and send them to the original des-
tination bistro. The original destination bistro can
grant the mirroring request, if the user-ID and pass-
word match. Mirroring can also reduce the vulner-
ability of the Bistro system under denial-of-service
type attacks.

Can One Upload to the Destination bistro Di-

rectly? If the destination bistro is not highly loaded,
upon receiving h(T'), it can suggest itself as a can-
didate for the commit step. The destination bistro
can use a simple algorithm (e.g., based on the time
to deadline and a count of the number of “self-
uploads” already granted) to determine if it should
allow this option.

Where Are the Malicious bistros? If bistro X re-
fuses (or is unable, e.g., due to failure) to send the
receipt to the destination bistro in step (2b) of Sec-
tion 2.3, the destination bistro will not know where
to obtain the user’s submission, other than the user
him/herself. However, since it had the correspond-
ing user’s email address it can notify this user that
a resubmission is needed. The client-side submis-
sion software can easily assist the user in this re-
submission since it has the appropriate upload ticket
which it received from the destination bistro earlier.
Hence, the client-side submission software can con-
tact the destination bistro and present the receipt,
generated by the possibly malicious bistro X, as
well as the upload ticket, generated by the destina-
tion bistro, and request a re-submission directly to
the destination bistro. Since the destination bistro
has the message digest of the text, the client can-
not change the text without this being detected. The
destination bistro can also collect statistics about
this bistro X (using the receipts) and eventually
declare it as either malicious or unreliable, if it is
deemed so.

How to Distribute Event Public Keys? As in any
public key crypto system, there is the problem of
key distribution. We choose to simply publish the
EID and Kpub over the web. This is vulnerable to
the usual attacks, such as man-in-the-middle, and so
on.

What About bistro Break-ins? If a destination
bistro is compromised, all events hosted on this
bistro are compromised. It is up to the individual
administrator to protect his/her bistros.

AreClients Authenticated? We do not authenti-
cate the client as part of the Bistro framework. This
problem is similar to certified mail in a postal ser-
vice — one never knows who the physical sender is.
In a tax form submission, the government agency
relies on the signature of the tax-payer on the tax
form for authentication. In the same vein, we do not
authenticate the client, but assume that the end-user
can provide the needed authentication, for instance,
in the submitted document. For example, a digital
signature can be embedded in the submitted text to

authenticate the user. Such needs are application de-
pendent.

3 Conclusions

In this paper we presented a security protocol for
our Bistro architecture, which is designed for scal-
able wide-area upload applications, as well as dis-
cussed the corresponding security properties of this
protocol. An important consideration in designing
this security protocol was not only the strength of
its security characteristics but also the performance
and scalability characteristics of the resulting sys-
tem.

Our long term goal is to accomplish scalability in
Internet-based upload applications through the use
of the Bistro framework over a wide range of ap-
plications and problem sizes. We believe that the
Bistro platform is extensible to other Internet-based
applications which have a many-to-one data transfer
component, such as digital government, Internet-
based storage, e-commerce, and many more.

References

[1] S. Bhattacharjee, W. C. Cheng, C.-F. Chou,
L. Golubchik, and S. Khuller. Bistro: a plat-
form for building scalable wide-area upload ap-
plications. ACM SIGMETRICS Performance
Evaluation Review (also presented at the Work-
shop on Performance and Architecture of Web
Servers (PAWS) in June 2000), 28(2):29-35,
September 2000.

[2] W. C. Cheng, C.-F. Chou, L. Golubchik, and
S. Khuller. A performance study of bistro, a
scalable wide-area upload architecture. Submit-
ted for publication.

[3] IRS. Fill-in Forms.
http://www.irs.ustreas.gov/prod/forms_pubs/fillin.html,
2001.

[4] RSA Laboratories. Public Key Cryptography
Standard #1: RSA Encryption Standard Version
1.5. RSA Data Security, Inc., Redwood City,
CA, USA, November 1993.

[5] L. L. Peterson and B. S. Davie. Computer Net-
works - a Systems Approach. Morgan Kauf-
mann, 2000, 2nd Edition.

[6] B. Schneier. Applied Cryptography, Second
Edition. Wiley, 1996.

[7] United States Department of Commerce. Data
Encryption Standard, Jan. 1988.

