CS551
End-to-End Internet
Packet Dynamics
[Paxson99b]

Bill Cheng

http://merlot.usc.edu/cs551-f12
End-to-end Packet Dynamics

- How do you measure Internet performance?
 - Why do people want to know?
 - Are ISPs willing to tell you?

- What kinds of packet dynamics are observed in the network?

- Does there exist a *typical* Internet path?
Key Ideas

- Measure Internet traffic
 - active measurements
 - N^2 paths
 - lots of details out of TCP

- Evaluate dynamics
 - pathologies (out-of-order, duplication, corruption)
 - bandwidth
 - loss
 - delay
Methodology

Previous studies
- Focused on a small number of paths
- Used unrealistic traffic (pings etc.)

Paxson’s study
- Examined nearly 1000 paths
- Used TCP traffic
 - routers designed to handle TCP as common case
 - congestion-adaptive (both good and bad)
- Was extraordinarily careful
 - used statistically valid sampling to reduce bias
 - looked at the wire to get most confidence
 - adjusted for TCP implementation idiosyncrasies
Pathologies: Reordering

Reordering: packets arrive at receiver in a different order than they were sent

Evidence:
- Significant (non-trivial) occurrence (10-30% connections)
- Strongly-site dependent
- Most egregious instances correlated with route flutter
 - Different packets sent along different routes

Other curious effects
- Router forwarding lulls (i.e., stops forwarding as if it has gone to sleep)
Impact of Reordering

- On TCP fast retransmit and recovery
 - Which assume packet loss upon receiving dup-ACKs
 - But packets may actually have been reordered

- Can we avoid this by:
 - Waiting before sending ACK
 - yes, about 20ms waits would have detected most reordering events
 - Reducing the dup-ACK threshold
 - possibly, to 2
 - But, these require server and client side change
 - bottom line: current techniques work
Other Pathologies

- Packet duplication
 - Link layer retransmissions
 - Happens, but very infrequently

- Packet corruption
 - About 1 in 5000 (2x10^{-4})
 - Is TCP 16-bit checksum enough to protect against this?
 - maybe not

- Found one out of 300K ACKs corrupted, so maybe not
Bottleneck Bandwidth Estimation

How do you compute the bottleneck path bandwidth?
- Bottleneck BW: max possible rate
- Available bandwidth: reasonable share

Packet pair
- Send two packets, each size S, closely spaced
- At bottleneck, the packets are separated by a time T
- Bottleneck bandwidth $Q_b = S/T$

Where to measure? Sender (RTT) or receiver (OTT)?
- If inference done at sender, can be error-prone because of
 - ACK compression
 - bandwidth asymmetry, which causes noise in reverse path
Packet Pair Problems and Fixes

- Clock granularity (fix: measure multiple packets)
- Route changes (fix: measure several, take mode)
- Out of order delivery (fix: filter out)
- Multi-channel links, route spraying (fix: measure for multiple packets)
Fix? Packet-bunch Modes

Compute estimates from *bunches* of packets each sent closely spaced to the next (also known as *packet trains*)

Get *modes* from the distribution of estimates
- If two modes widely separated in trace-> route change
- If two modes for different bunch sizes-> multi-channel links
- Bunches also eliminate clock granularity problems
Packet Loss

- Fairly high rates (3% or 5%)
 - much higher on some links, ex. US to Europe
- But many connections are loss-free (30-66%)
Is Loss Predictive?

short-time-scale: packet a to b (stream)
- define *queued* and *unqueued* pkts
 - queued := packet i queued behind i-1 at bottleneck link
 - else unqueued (sufficient spacing that no self-queueing)
- queued packets have much higher loss rates

long-time scale: hours or days
- zero/non-zero is predictive (data not in paper)
- actual loss *rate* is not predictive
- allows *traffic engineering*
Loss Patterns

Data vs ACK loss
- Data loss across connections well-modeled by exponential
- Not so for ACKs

Bursts
- Loss are *not* independent
- Burst sizes are heavy-tailed
Burst Loss

- Conditional loss definition
 - \(P[\text{pkt i lost} \mid \text{pkt i-1 was lost}] \)
 - conditional loss rates are much higher

- Why
 - drop-tail routers

- Implications
 - losses are not i.i.d

<table>
<thead>
<tr>
<th>Type of loss</th>
<th>(P_{\text{u}}^i) (N_1)</th>
<th>(P_{\text{c}}^i) (N_1)</th>
<th>(P_{\text{u}}^i) (N_2)</th>
<th>(P_{\text{c}}^i) (N_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queued data pkt</td>
<td>2.8% 4.5%</td>
<td>49% 50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unqueued data pkt</td>
<td>3.3% 5.3%</td>
<td>20% 25%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ack</td>
<td>3.2% 4.3%</td>
<td>25% 31%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Overall Loss Characteristics

- **ACK loss is the correct determinant of network conditions**
 - In measuring, must be careful to account for tcpdump losses
- **Doubling of average loss in one year**
- **Loss rates don’t have predictive power**
 - But whether a connection suffers loss or not can be used for prediction
- **Existence of**
 - Dual network states (quiescent vs. busy)
 - Diurnal variations
 - Geographical diversity in loss patterns
 - No typical loss rate
- **Avoiding unnecessary retransmissions**
 - Correct RTO implementation
 - SACK
Delays

- ACK and data timing compression should *not* happen

- ACK compression
 - A flight of ACKs queued behind cross traffic
 - Happens quite infrequently
 - although most connections experienced one
 - durations are small and number of such events is small
 - Packet pair techniques can account for this by rejecting outliers

- Data timing compression
 - Much more infrequent than ACK compression
 - Possibly due to specific routers
Delays

Queueing time scales
- Measured by variations in one-way transit times
- Show wide variability, so we cannot design for a particular regime

Available bandwidth
- Approximated by variations in delay experienced due to own loading
- Again, shows wide variability
- Most between 0.1 - 1 sec
Questions?

- Do you think this study is valid today?
- What has happened since 1995?
- Dialup->broadband
- Better connectivity
- Higher backbone speeds