CS551
Handoff Performance in Cellular Networks
[Balakrishnan95b]

Bill Cheng

http://merlot.usc.edu/cs551-f12
Key Ideas

- Deals with TCP in mobile environments
 - packet loss (corruption)
 - handoff (changing from one base station to another)

- Snoop
 - base stations cache TCP segments and quickly retransmit

- Handoff
 - cache TCP segments at nearby base-stations to allow rapid handoff
Problem: TCP Loss Handling in Wireless

- TCP assumes loss implies congestion
 - TCP’s reaction: reduce sending rate

- Wireless adds losses due to corruption, collision, handoff
 - desired reaction: retransmit lost packets quickly

Approach:
- let base-station help out
- alternative is to do link-level reliability
Alternatives

Split-connection TCP:
- from BS, use one TCP connection to FH and another to MH
- but requires changes to FH, BS, MH
- what does an ACK mean now?

Make TCP distinguish congestion vs. other kinds of loss
- good idea: done with ECN
- but done after this work and not widely deployed even today
- requires changes to FH and MH

Link-layer retransmission
- good idea, but must be careful to avoid interactions between link-layer and TCP (works if on different timescale)
Constraints

- Incremental deployment
 - Solution should not require modifications to fixed hosts
 - If possible, avoid modifying mobile hosts

- Preserve TCP end-to-end semantics
 - ACK of a packet means it’s at the receiver, not the base station
Snoop Overview

Base Station (BS) *snoops* passing traffic (data/acks); quickly retx’s data

FH-to-MH:
- Fixed Host (FH) sends data to MH
 - no change to FH code
- MH receives data, sends ACKs as usual

MH-to-FH:
- BS adds SACK support (even if FH doesn’t support it)
- Data flows from MH to FH
- ACKs flow from FH to MH

Copyright © William C. Cheng
FH-to-MH Snoop Data Processing

1. Packet arrives from FH
 - New pkt?
 - Yes
 - In-sequence?
 - Yes
 - 1. Cache packet
 2. Forward to mobile
 Common case
 - No
 - 1. Mark as congestion loss
 2. Forward packet
 Congestion loss
 - No
 - 1. Forward packet
 2. Reset local retransmission counter
Sender Retransmission

2. Out of sequence, cached
 - In-sequence?
 - Yes
 - New pkt?
 - Yes
 - Add to cache and pass on
 - No
 - Should not be common
 - No
 - Greater than last acked:
 - Pass on
 - Else: generate ACK to fixed host (may be caused by a lost ACK)

3. Out of sequence, not cached
 - Lost or delayed out-of-order
 - Pass on, and keep information
Snoop ACK Processing

1. Ack arrives from MH
 - New ack?
 - Yes
 - 1. Free buffers
 - 2. Update RTT estimate
 - 3. Propagate ACK to sender
 - No
6. Clean up cache
 - Pass on to FH

2. Duplicate ACK
 - Dup ack?
 - Yes
 - Retransmit lost packet with high priority
 - Spurious ack
 - No
 - Discard
6. If data not in cache, or sender retransmit, pass on to FH (not in flowchart)
 - No
 - Discard
 - Yes
 - First one?
 - Yes
 - Retransmit lost packet with high priority
 - Next packet lost
 - No
 - Discard
6. If in cache, respond immediately
 - suppress other dupacks
Handoff Support

General approach:
- extend mobile IP to *multicast* packets to several FA’s (base stations, BSes)
- MH informs BS when it’s changing
- BSes are pre-loaded w/data, can run snoop and quickly repair losses
Other Issues

- What about mobile-to-fixed communication?
 - Modify snoop module to generate SACKs

- TCP over ad-hoc networks?
 - Open area of research
Discussion

Impact
- deployable solution for wireless performance enhancement

Does this violate the end-to-end argument?

Other examples?
- fast-retransmit in TCP
- layer-4 caching? (i.e., caching HTTP without the end points knowing it)

Nice aspects of Snoop
- minimal changes to improve performance
- soft-state design
- preserves TCP semantics
- implementation