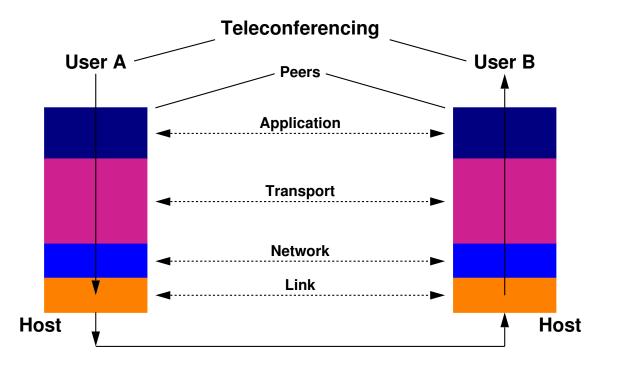
CS551 Layering and Addressing

Bill Cheng

http://merlot.usc.edu/cs551-f12

Protocols


- Set of rules governing communication between network elements (applications, hosts, routers)
- Protocols define:
 - Format and order of messages
 - Actions taken on receipt of a message
- Protocols are hard to design
 - We need design guidelines!

Layering

Layering: technique to simplify complex systems

Layering Characteristics

- Each layer relies on services from layer below and exports services to layer above
- Interface defines interaction
- Hides implementation layers can change without disturbing other layers (black box)

Computer Communications - CSCI 551 **Layer Encapsulation** ■ Copyright © William C. Cheng

OSI Model: 7 Protocol Layers

Physical: how to transmit bits

Data link: how to transmit frames

Network: how to route packets hop2hop

Transport: how to send packets end2end

Session: how to tie flows together

Presentation: byte ordering, security

Application: everything else!

Layering General Issues

- Multiplexing
- Connection setup (handshaking)
- Addressing/naming (locating peers)

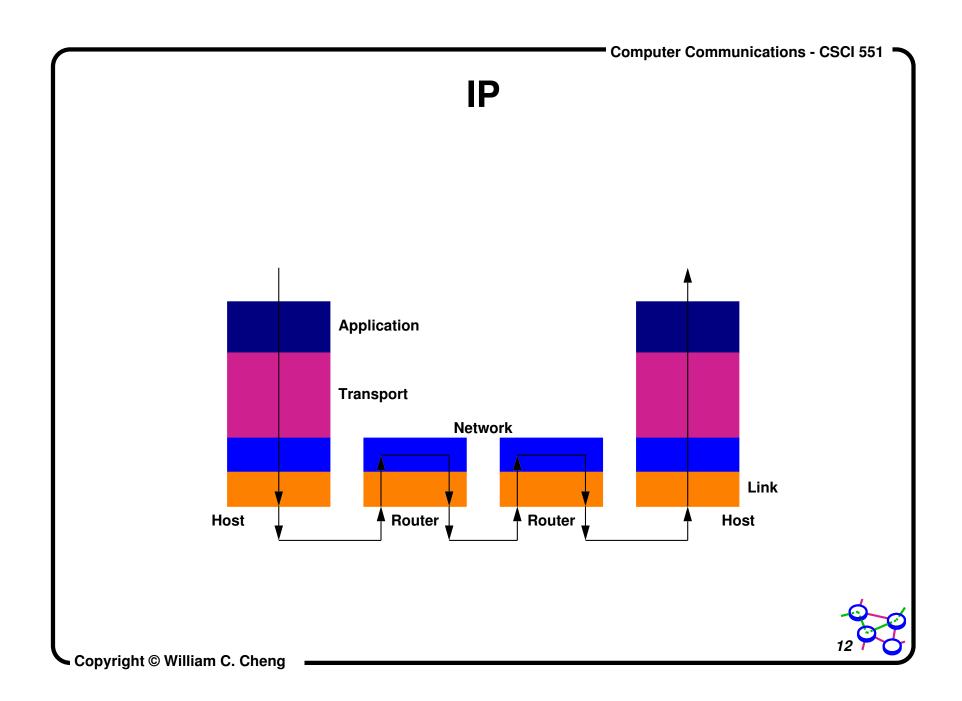
Example: Transport Layer

Example: Network Layer

Network and host addressing

Routing

Is Layering Harmful?


Sometimes..

- Layer N may duplicate lower level functionality (e.g., error recovery).
- Layers may need same info (timestamp, MTU).
- Strict adherence to layering may hurt performance.
- Naïve layer implementation frequently hurts performance.

Course Focus

IP & TCP

IP Header

```
|Version| IHL |Type of Service|
              Total Length
|Flags|
               Fragment Offset
Time to Live |
       Protocol
              Header Checksum
Source IP Address
Destination IP Address
  Options
                  Padding
```

Example Internet Datagram Header

IP Functions

- Type of service
 - Not used until recently
- Identification, flags and fragment offset
 - Fragmentation
- Time to live
 - Bounded delivery
- **Protocol**
 - (De)multiplexing higher layer protocols (analogous to port numbers in TCP)
- Length
 - IP packet length limited to 64K
- Header checksum
- Ensures some degree of header integrity
 Copyright © William C. Cheng

Fragmentation

- Forwarding costs per packet
 - Nice if we can send large chunks of data
- Different link-layers have different MTUs
- Fragmentation
 - Intra-network
 - Inter-network

Fragmentation Is Harmful

- Uses resources poorly
 - Example of packet just bigger than MTU
- Poor end-to-end performance
 - Loss of a fragment
- Reassembly is hard
 - Buffering constraints

Path MTU Discovery

- Hosts dynamically discover MTU of path
 - Send message with don't fragment bit
 - Get ICMP message indicating size
- What happens if path changes?
 - Increasing/decreasing path MTU
- Usually implemented by the *transport* layer
 - Expected that future routing protocols will provide MTU information

Path MTU

Algorithm:

- Initialize MTU to MTU to next hop
- Send datagrams with DF bit set
- If "datagram too big", decrease MTU
- Periodically (>5mins, or >1min after previous increase), increase MTU
- Some routers will return proper MTU
- MTU values cached in routing table

Addressing in IP

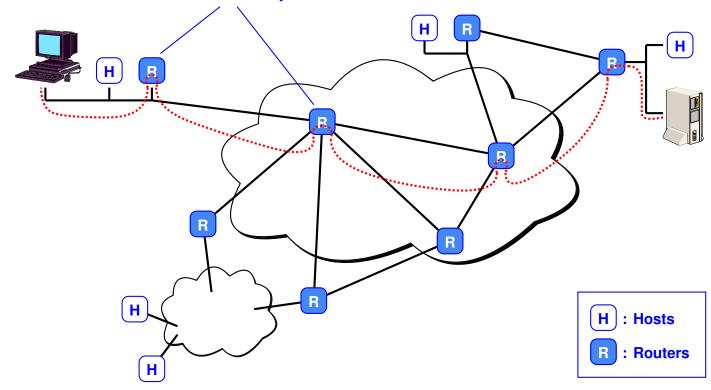
DNS binds host names to interfaces

Routing binds interface names to paths

Addressing Considerations

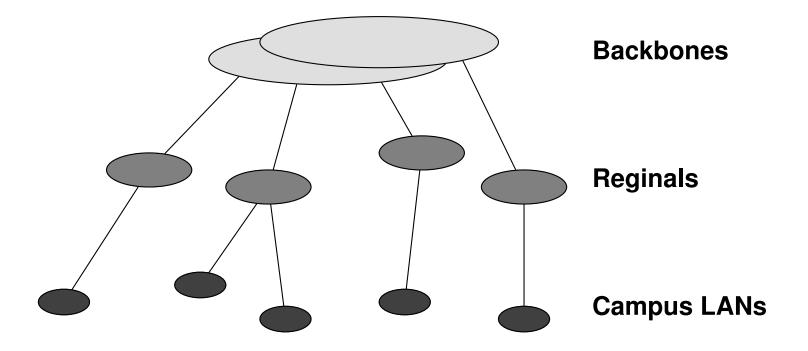
- Fixed length or variable length?
- | Issues:
 - Flexibility
 - Processing costs
 - Header size
- > Engineering choice: IP uses fixed length addresses

Addressing Considerations



- Need structure for designing scalable binding from interface name to route!
- How many levels? Fixed? Variable?

Packet Traveling Through the Internet


Routers send packet to next closest point

22

Copyright © William C. Cheng

IP Addressing Hierarchy

Some Special IP Addresses

127.X.X.X: same as above.

Host bits all set to 0: network address.

Host bits all set to 1: broadcast address.

0.0.0.0: this host on this network.

IP Addresses

Fixed length: 32 bits

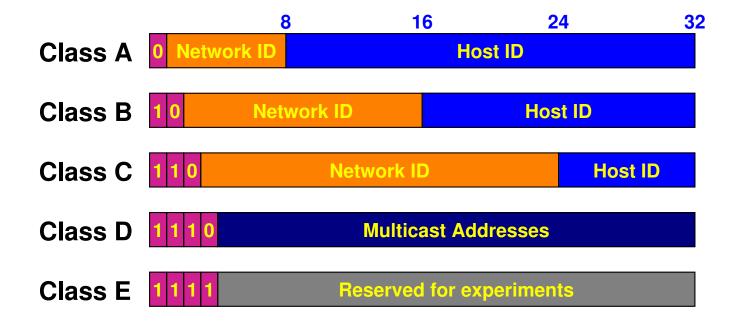
Initial classful structure

High Order Bits	Format		
0	7 bits of net, 24 bits of host	a a	
10	14 bits of net, 16 bits of host	b	
110	21 bits of net, 8 bits of host	C	
111	escape to extended addressing mode	1	

Class Sizes

Total IP address size: 4 billion

Class A: 128 networks, 16M hosts


Class B: 16K networks, 64K hosts

Class C: 2M networks, 256 hosts

Computer Communications - CSCI 551

IP Address Classes (Some Are Obsolete)

Subnet Addressing

- **Very few LANs have close to 64K hosts**
- for networks with more than 255 hosts
- - could subnet a class B into several chunks

Network Subnet Host

Subnetting

Simple and elegant way to reduce the total number of network addresses that are assigned.

network	host		
network	subnet	host	
1111	1111	Host	mask

Subnetting Example

- Assume an organization was assigned address 150.100 (10010110 01100100)
- Assume < 100 hosts per subnet
- How many host bits do we need?
 - seven
- What is the network mask?
 - **-** 11111111 11111111 11111111 10000000
 - **255.255.255.128**

Using Subnet Mask

- Assume a packet arrives with address 150.100.12.176 (10010110 01100100 00001100 10110000)
- Step 1: AND address with subnet mask
 - **(150.100.12.176)** *AND* (255.255.255.128)
 - result: 150.100.12.128 which is the target network
- Target network has hosts in the range
 - **-** 150.100.12.129 150.100.12.254

IP Address Problem (1991)?

- Address space depletion
 - in danger of running out of classes A and B
- Routing table explosion

Some Problems

- Class B sparsely populated
 - but people refuse to give it back
- One solution: assign class C addresses
 - how do you allocate to avoid routing table explosion?
- Addresses not geographically related
 - addresses given by your ISP
 - blocks assigned to various countries

Classless Inter-domain Routing (CIDR)

- Do not use classes to determine network ID
- Use common part of address as network number
 - i.e., use netmask (/xx bits) for network address
- E.g., addresses 192.4.16 192.4.31 have the first 20 bits in common. Thus, we use this as the network number
 - **192.4.16: 11000000 00000100 00010000**
 - **—** 192.4.31: 11000000 00000100 00011111
 - netmask is /20
- In CIDR /xx is valid for almost any xx

CIDR Addressing

- A block of addresses is described by
- address prefix
- mask

Examples:

- 10/8 denotes addresses from 10.0.0.0 to 10.255.255.255
- /xx indicates number of significant bits

Classless Inter-Domain Routing (CIDR)

- **Several key ideas**
- allocate addresses to organizations in power-of-two blocks
- organizations get addresses from provider's block
- provider aggregates

Addresses:

- address utilization
- routing table size

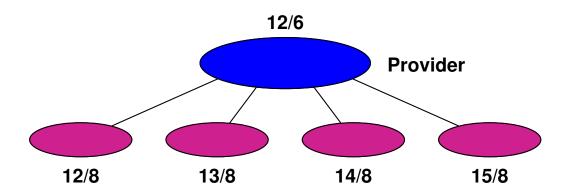
Old classes and CIDR

Class B network is a /16

Class C network is a /24

CIDR prefixes

CIDR Blk Prfx	# Eqiv Class C	# of Hosts
/28	1/16	16
/27	1/8	32
/26	1/4	64
/25	1/2	128
/24	1 class C	256
/23	2	512
/22	4	1,024
/21	8	2,048
/20	16	4,096
/19	32	8,192
/18	64	16,384
/17	128	32,768
/16	256=1 class B	65,536
/15	512	131,072
/14	1,024	262,144
/13	2,048	524,288


CIDR example

- Network admin is allocated 8 class C chunks, 201.10.0.0 to 201.10.7.255 (11001001 00001010 00000000 000000000 to 11001001 00001010 00000111 11111111)
- Allocation uses 3 bits of class C space
- Remaining 21 bits are network number, written as 201.10.0.0/21
- 21 is prefix indication which must be carried with address
- Routing protocols carry this prefix

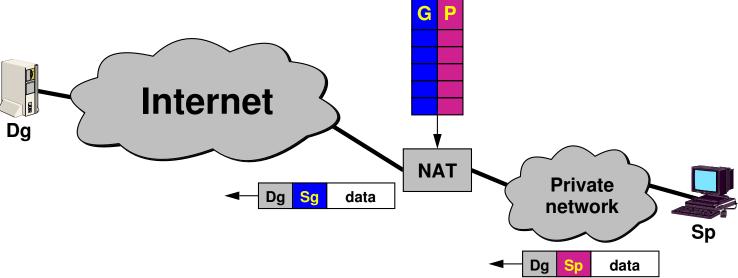
Computer Communications - CSCI 551

CIDR Illustration

40

CIDR Shortcomings

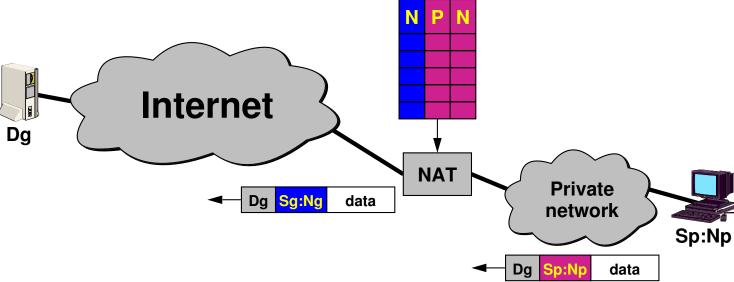
- Multi-homing
- Customer selecting a new provider
- Some other ideas
 - geographic addressing
- Is it enough? Do we need a new IP?


Network Address Translation (NAT)

- Kludge (but useful)
- Sits between your network and the Internet
- Translates local network layer addresses to global IP addresses
- Has a pool of global IP addresses (less than number of hosts on your network)

NAT Illustration

Pool of global IP addresses


Operation:Sp wants to talk to Dg:

- □ Create *Sg-Sp* mapping (*g* for global and *p* for private)
- □ Replace *Sp* with *Sg* for outgoing packets
- □ Replace *Sg* with *Sp* for incoming packets

NAT Illustration - Overloading

Single global IP addresses

Operation:Sp:Np wants to talk to Dg:

- Create Ng-Sp:Np mapping
- □ Replace *Sp:Np* with *Sg:Ng* for outgoing packets
- □ Replace Sg:Ng with Sp:Np for incoming packets

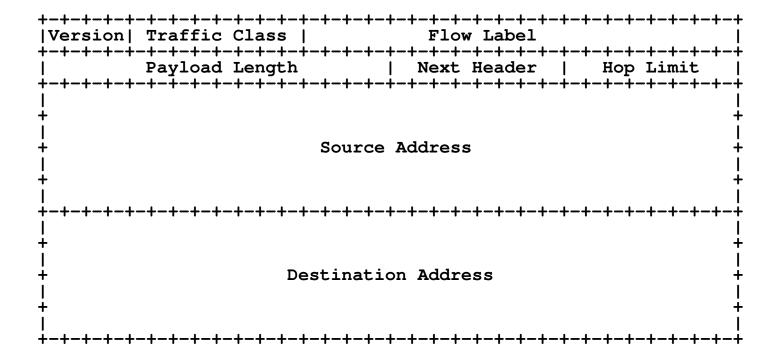
NAT Disadvantages

- **Breaks end-to-end semantics**
- internal computers cannot be addressed from the outside
- more on End-to-end Argument later [Saltzer81a]

- NAT box modifies packets on the fly
- sometimes needs to modify app-level info, not just packet headers
 - ex. if IP address is in packet data (not just header), as in FTP
- therefore forces application-specific gateways (for protocols that do not work behind NAT box)
- state information stored in NAT box
- new failure modes

NAT Advantages

- **Breaks end-to-end semantics**
- internal computers cannot be addressed from the outside
- an effective security kludge!
- Cheap, relatively easy, relatively fast
- Don't have to tell your cable modem company :-)

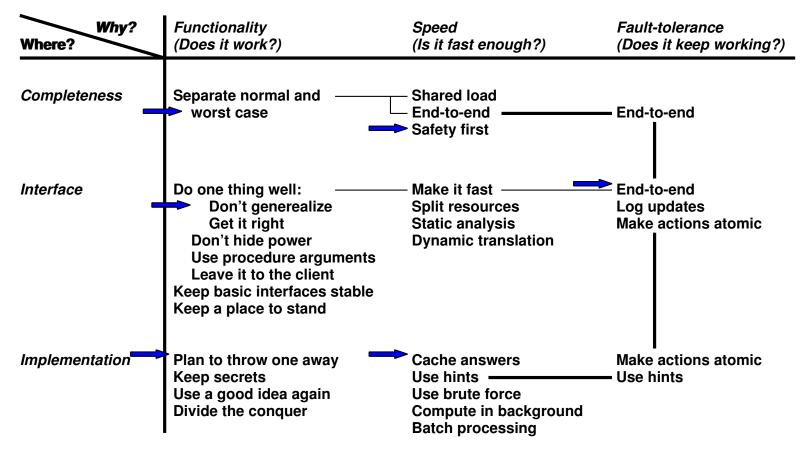

IPv6

- The Right Way
 - just make bigger addresses
 - and fix a bunch of other stuff
- But... requires a whole new protocol stack
 - slow adoption
 - but but... seems to be gaining momentum
- Cell phones
- Asia
- We will not talk about IPv6 in this class

Computer Communications - CSCI 551

IPv6

Things to Think About


How much IP functionality is really useful?

Was IP a success by design or by accident?

More on this later [Clark88a]

Hints for Computer System Design

50