7 Computer Communications - CSCI 551 N

CS551
NS Tutorial
Slides Developed by:
John Heidemann
johnh@isi.edu
USC/ISI .

7 Computer Communications - CSCI 551 N

ns-2, the network simulator

_) adiscrete event simulator
= simple model

) focused on modeling network protocols

wired, wireless, satellite

TCP, UDP, multicast, unicast

web, telnet, ftp

ad hoc routing, sensor networks
infrastructure: stats, tracing, error models, etc.

[

0 00 [

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

ns goals

support networking research and education
= protocol design, traffic studies, etc.
= protocol comparison

provide a collaborative environment
= freely distributed, open source

share code, protocols, models, etc.
—= allow easy comparision of similar protocols
= jncrease confidence in results

more people look at models in more situations
experts develop models

multiple levels of detail in one simulator

VR VR VR VAV R

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

ns history
) Began as REAL in 1989
_) ns by Floyd and McCanne at LBL

_) ns-2 by McCanne and the VINT project (LBL, PARC, UCB,
USC/ISI)

) currently maintained at USC/IS, with input from Floyd et al.

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

"ns'" components
_) ns, the simulator itself

) nam, the Network AniMator
= Vvisualize ns (or other) output
= GUI input simple ns scenarios

_) pre-processing:
= traffic and topology generators

_) post-processing:
= simple trace analysis, often in Awk, Perl, or Tcl

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

ns models

G> Traffic models and applications:
= web, FTP, telnet, constant-bit rate, Real Audio

) Transport protocols:
= unicast: TCP (Reno, Vegas, etc.), UDP
= multicast: SRM

) Routing and queueing:
= wired routing, ad hoc rtg and directed diffusion
= queueing protocols: RED, drop-tail, etc.

) Physical media:
= wired (point-to-point, LANs), wireless (multiple
propagation models), satellite

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

ns status
) platforms: basically all Unix and Windows
_) size: about 200k loc each C++ and Tcl, 350 page manual
_) user-base: >1k institutions, >10k users

ﬁ> releases about every 6 months, plus daily snapshots

\. Copyright © William C. Cheng

_» Concepts
_) Essentials
_) Getting Started

Outlines

—, Fundamental tcl, otcl and ns

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Computer Communications - CSCI 551 N

Discrete Event Simulation

) model world as events
= simulator has list of events
= process: take next one, run it, until done
= each event happens in an instant of virtual (simulated)
time, but takes an arbitrary amount of real time

) ns uses simple model: single thread of control => no locking
or race conditions to worry about (very easy)

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Discrete Event Examples

Consider two nodes
on an Ethernet: simple t=1: A enqueues pkt on LAN

N queting t=1.01: | LAN dequeues pkt
model:)
G and triggers B

detailed t=1.0: | A sends pkt to NIC

CSMA/CD A’s NIC starts carrier sense
model: t=1.005:| A’s NIC concludes cs,
starts tx

t=1.006: | B’s NIC begins reciving pkt

t=1.01: | B’s NIC concludes pkt
B’s NIC passes pkt to app

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Discrete Event Scheduler

Event . .
time_, uid_, next_, handler |
Queue —

Dequeue Dispatch

y
handler —->handle ()

Head —»

) Four types of scheduler:
= List: simple linked list, order-preserving, O(N)
= Heap: O(logN)
= Calendar: hash-based, fastest, default, O(1)
= Real-time: subclass of list, sync with real-time, O(N)

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

ns Software Structure: object
orientation

_) Object oriented:
= |ots of code reuse (ex. TCP + TCP variants)

_) Some important objects:
= NsObject: has recv() method
= Connector: has target() and drop()
= BiConnector: uptarget() & downtarget()

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

ns Software Structure: C++ and Otcl
ﬁ> Uses two languages

) C++ for packet-processing
= fast to run, detailed, complete control

ﬁ> OTcl for control
= simulation setup, configuration, occasional actions
= fast to write and change

) pros: trade-off running vs. writing speed,
powerful/documented config language

G> cons: two languages to learn and debug in

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

OTcl and C++: The Duality

4)
4 N 7 N
///—§—\ T~
| || | e | || |
P _ 7~
Pure C++ // / // | | |/ | Pure OTcl
objects / ’_i‘ / | | | objects
v/ v >
\ \
| || | \ \
l l
— < /
\\\\::\\\ </ //
C++/0OTcl split objects
_ C++ JRN OTcl)
N ns J

ﬁ} OTcl (object variant of Tcl) and C++ share class hierarchy

ﬁ> TclICL is glue library that makes it easy to share functions,
variables, etc.

o
o
o
14T Q|
\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Outlines

) Concepts
_) Essentials

_, Getting Started

—, Fundamental tcl, otcl and ns

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Installation and Documentation

_) http://www.isi.edu/nsnam/ns/
= download ns-allinone (if you have your own machine,

do not build this on USC servers)
= jncludes Tcl, OTcl, TcICL, ns, nam, etc.
= run ns and nam on ISD machines:

Q ~cscib51/ns

Q ~ecsci551/nam

) mailing list: ns-users@isi.edu

) documentation (see url above)
= Marc Gries tutorial
= NS manual

\. Copyright © William C. Cheng

set
$ns
Sns
$ns

\. Copyright © William C.

simple.tcl:

nunki 74% ~csci551/ns simple.tcl
Hello World!
nunki 75%

Think C++:

Simulator *ns=new Simulator;

ns-—
ns-—
ns-—

Computer Communications - CSCI 551 N

Hello World

ns [new Simulator]

at 1 "puts \"Hello World!\""
at 1.5 "exit"

run

>at (1, "puts \"Hello World!\"");
>at (1.5, "exit");
>run{() ;

Cheng

7 Computer Communications - CSCI 551 N
Hello World, Deconstructed

set ns [new Simulator]
create a simulator, put in var ns
$ns at 1 "puts \"Hello World!\""
schedule an event at time t=1 to print HW
$ns at 1.5 "exit"
and exit at a later time
$ns run

run time simulator

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Outlines
) Concepts
_) Essentials
_) Getting Started
_, Fundamental tcl, otcl and ns

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N
Basic Tcl

variables: Also lists, associative arrays, etc.

set x 10

. = cah use a real programmin
puts " is $X" p g g

language to build network
functions and expressions: topologies, traffic models, etc.

set v [pow x 2]
set y [expr x*x]

control flow:
if {$x > 0} { return S$x }
else { return [expr -$x] }
while { $x > 0 } {
puts $x
incr x -1

}
procedures:
proc pow {x n} {
if {$n == 1} { return $x }
set part [pow x [expr $n-1]]
return [expr $x*Spart]
} C
20€RE:
\. Copyright © William C. Cheng J/

7 Computer Communications - CSCI 551 N
Basic otcl

Class Person
constructor:
Person instproc init {age} {
$self instvar age_
set age_ $age
}
method:
Person instproc greet {} {
$self instvar age_
puts "$age_ years old: How are you doing?"
}
subclass:
Class Kid —-superclass Person
Kid instproc greet {} {
$self instvar age_
puts "$age_ years old kid: What’s up, dude?"

}

set a [new Person 45]
set b [new Kid 15]

$a greet
Sb greet
= can easily make variations of existing things (TCP, TCP/Reno)
C—C
2190

\. Copyright © William C. Cheng

4 Computer Communications - CSCI 551 N
Basic ns-2
G> Creating the event scheduler
) [Turn on tracing]
_) Creating network
ﬁ> Setting up routes
_) Inserting errors
) Creating transport connection

_) Create traffic

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Creating Event Scheduler
G> Create scheduler

—= set ns [new Simulator]

) Schedule event

—= $ns at <time> <event>

= <event>: any legitimate ns/tcl commands

) Start scheduler

—= Sns run

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Creating Network

_) Nodes

—= set n0 [$ns node]

= set nl [$ns node]

) Links & Queuing

= $ns duplex-link $n0 $nl <bandwidth> <delay> <queue_type>
= <queue_type>: DropTail, RED, CBQ, FQ, SFQ, DRR

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Computing routes

ﬁ> Unicast

= $ns rtproto <type>

= <type>: Static, Session, DV, cost, multi-path

_) Multicast
—= $ns multicast
Q right after [new simulator]
= $ns mrtproto <type>
= <type>: CtrMcast, DM, ST, BST

\. Copyright © William C. Cheng

G> simple two layers: transport and app

_) transports:
= TCP, UDP, etc.

) applications: (agents)
= ftp, telnet, etc.

\. Copyright © William C. Cheng

Traffic

Computer Communications - CSCI 551 N

Computer Communications - CSCI 551 N

Creating Connection: UDP
ﬁ> source and sink

= set usrc [new Agent/UDP]

—= set udst [new Agent/NULL]

) connect them to nodes, then each other
= $ns attach-agent $n0 $usrc
= $ns attach-agent $nl $udst

—= Sns connect $usrc $udst

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Creating Connection: TCP
ﬁ> source and sink

= set tsrc [new Agent/TCP]
= set tdst [new Agent/TCPSink]

) connect to nodes and each other
= $ns attach-agent $n0 $tsrc
= $ns attach-agent $nl $tdst

—= Sns connect $tsrc $tdst

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Creating Traffic: On Top of TCP

_) FTP

= set ftp [new Application/FTP]
—= §ftp attach—-agent $tsrc

= $Sns at <time> "S$ftp start"

_) Telnet

= set telnet [new Application/Telnet]
= Stelnet attach-agent $tsrc

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Creating Traffic: On Top of UDP
) CBR

= set src [new Application/Traffic/CBR]

) Exponential or Pareto on-off

= set src [new Application/Traffic/Exponentiall

—= set src [new Application/Traffic/Pareto]

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Creating Traffic: Trace Driven
ﬁ> Trace driven

—= set tfile [new Tracefile]
= S$tfile filename <file>
= set src [new Application/Traffic/Trace]

—= Ssrc attach-tracefile $tfile

Q <file>:

—= Binary format
= [nter-packet time (msec) and packet size (byte)

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Compare to Real World

) more abstract (much simpler):
= no addresses, just global variables
= cohnect them rather than name lookup/bind/listen/accept

) easy to change implementation
= set tsrc2 [new Agent/TCP/Newreno]

= set tsrc3 [new Agent/TCP/Vegas]

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Inserting Errors
G> Creating Error Module

—= set loss_module [new ErrorModel]
$loss_module set rate_ 0.01
$loss_module unit pkt

$loss_module ranvar [new RandomVariable/Uniform]

00 00

$loss_module drop-target [new Agent/Null]

) Inserting Error Module

—= Sns lossmodel $loss _module $n0 $nl

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Tracing

G> Trace packets on all links into test.out

= $ns trace-all [open test.out w]

<event> <time> <from> <to> <pkt> <size>--<flowid> <src> <dst>
<seqno> <asegno>

+ 10 2 ¢cbr 210 ——————- 0 0.03.100
-102 ¢cbr 210 -—————- 0 0.03.100
r 1.00234 0 2 cbr 210 - —————- 0 0.03.100

= <event> can be + for enqueue, - for dequeue, r for receive, d for drop,
and e for error

) Trace packets on all links in nam-1 format

= $ns namtrace-all [open test.nam w]

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Plumbing: Packet Flow

\
1
\
A 1
N 1
1
1
1
1
1

1

1

! \
\

\
\
1
1
Por

tdst_=o.o

1
\
ADD
1
Classifier

1
\
1

Classifier
0

St

i/ Addr

II N
/ Portdst_=1 0
1
m ,’ Addr
Classifier 0
ad

7

N

0

-Link n0-n1

Link n1-nO=

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Plumbing: Packet Flow

-

1
! \
II \\
! * lication/FT
Portdst_=1 0
Agent/TCP

Classifier

-Link n0-n1

1
1
1
1
1
1
1
1

1
1

Classifier
7

Addr

0
] N

Link n1-nO=

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Plumbing: Packet Flow

AY
1
1
1
1

1
\
AY
1 \
I N
! \
\ 1
AY 1
N 1
A 1J 1
1 AY
1 \
\
1
Port \dst_=0.0
Clossif® Agenyrcr>
AQ

1
1 \
\dst_=1.0 ,
1
i/ Addr /

! Port
Classifier
Agent/TCP
Classifier 0
7
0
AN

/ Addr
Classifier /
Omls
Link n0-n1 ‘ 1

_\

entry_

Link n1-nO=

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Plumbing: Packet Flow

1
1 N
Portdst_=o.o
Agent/TCP >

Classifier

i/ Addr

0
N

Link n1-nO=

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Plumbing: Packet Flow

AY
AY
1
1
1
1
1

1 \
! \
II \\ II
1 ‘\ App P 1 N
! Por_tdst_=1 .0 ! Portdst_=o.o
! Classifier m ! Classifier m
= i/ Addr 4
Classifier
0
0
AN

i/ Addr

St

0

-Link n0-n1

Link n1-nO=

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Plumbing: Packet Flow

1
\
1 \
1 \\
! \ \
\ \
\ \
AN AN
A LJ N
\
AY
Portdst_=o.o
Agent/TCP >

Classifier

i/ Addr

0
of |
AN

Link n1-nO=

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Plumbing: Packet Flow

AY
1
1
1
1
1
\
\

1
\
\
1 \
II \\
AN
\
\ 1
1
D =]
1 \
] \\
) Port . dst_=0.0
Agent/TCP >

I’ \
1 \\ Ap
Il Portdst_=1 .0 I
! Classifier m ! Classifier
AYe 1
i/ Addr
Classifier /
ad 0
0
AN

/" Addr

0

-Link n0-n1 ‘
!

Link n1-n0|<

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Plumbing: Packet Flow

\
1
\
A 1
N 1
1
1
1
1
1

1

1

! \
\

\
\
1
1
Por

tdst_=o.o

1
\
ADD
1
Classifier

1
\
1

Classifier
0

St

i/ Addr

II N
/ Portdst_=1 0
1
m ,’ Addr
Classifier 0
ad

7

N

0

-Link n0-n1

Link n1-nO=

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Plumbing: Packet Flow

\
1
\
A 1
N 1
1
1
1
1
1

1

1

! \
\

\
\
1
1
Por

tdst_=o.o

1
\
ADD
1
Classifier

1
\
1

Classifier
0

St

i/ Addr

II N
/ Portdst_=1 0
1
m ,’ Addr
Classifier 0
ad

7

N

0

-Link n0-n1

Link n1-nO=

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Summary: Generic Script
Structure

set ns [new Simulator]

[Turn on tracing]

Create topology

Setup packet loss, link dynamics
Create routing agents

Create:

— multicast groups

— protocol agents

— application and/or setup traffic sources
Post—-processing procs

Start simulation

3= 3 I I

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Example - TCP
ﬁ> Simple scenario with TCP and UDP connections

n0 n5
TCP UDP
recvr
5Mb n1 n2 5Mb
2ms 1.5Mb 2ms
10ms
n4 n3
UDP TCPSink

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

TCP : Step 1
ﬁ> Scheduler & tracing

#Create scheduler

set ns [new Simulator]
#Turn on tracing

set £ [open out.tr w]
Sns trace—-all $f

set nf [open out.nam w]
$ns namtrace-all $nf

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

TCP : Step 2
_) Create topology

#create nodes

set n0 [$ns node]
set nl [$ns node]
set n3 [$ns node]
set n4 [$ns node]

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N
TCP : Step 3

#create links

$ns duplex-link $n0 $nl 5Mb 2ms DropTail
$ns duplex—-1link $nl $n2 1.5Mb 10ms DropTail
$ns duplex-1link $n2 $n3 5Mb 2ms DropTail
$ns queue-limit $nl $n2 25

$ns queue-limit $n2 $nl 25

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

TCP : Step 4
_) Create TCP agents

set tcp [new Agent/TCP]

set sink [new Agent/TCPSink]
$ns attach—-agent $n0 S$tcp
$ns attach-agent $n3 $sink
$ns connect $tcp $sink

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

TCP : Step 5
_) Attach traffic

set ftp [new Application/FTP]
$ftp attach—-agent $tcp
#start application traffic
$ns at 1.1 "$ftp start’

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

TCP : Step 6

—)> End of simulation wrapper (as usual)

$ns at 2.0 "finish"

Proc finish {} {
global ns £
close $f
close S$nf
puts "Running nam..."
exec nam out.nam &
exit O

}

$ns run

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Viz Tools

ﬁ> Nam-1 (Network AniMator Version 1)
— Packet-level animation
= Well-supported by ns

_) Xgraph

= Convert trace output into xgraph format

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Ns-nam Interface

ﬁ> Color

—, Node manipulation
_) Link manipulation

) Topology layout
) Protocol state

_) Misc

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Nam Interface: Color
_) Color mapping

Sns color 40 red
Sns color 41 blue
$ns color 42 chocolate

) Color « flow id association

Stcp0 set fid_ 40 ;# red packets
$tcpl set fid_ 41 ;# blue packets

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Nam Interface: Nodes

ﬁ> Color

$node color red

) Shape (can’t be changed after sim starts)

$node shape box ;# circle, box, hexagon

) Marks (concentric shapes)

Sns at 1.0 "$n0 add-mark mO blue box"
Sns at 2.0 "$n0 delete—-mark mO"

) Label (single string)

Sns at 1.1 "$n0 label \"web cache 0 \""

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Nam Interfaces: Links

ﬁ> Color

$ns duplex-link-op $n0 $nl color "green"

_) Label

$ns duplex-link-op $n0 $nl label "abced"

) Dynamics (automatically handled)
$ns rtmodel Deterministic {2.0 0.9 0.1} $n0 $nl

_) Asymmetric links not allowed

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Nam Interface: Topo Layout
G> Manual layout: specify everything

$ns duplex—-link-op $n(0) $n(l) orient right
$ns duplex-link-op $n(l) $n(2) orient right-up
$ns duplex—-link-op $n(2) $n(3) orient down

$ns duplex-link-op $n(3) $n(4) orient 60deg

) If anything missing -> automatic layout

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Nam Interface: Protocol State

G> Monitor values of agent variables

$ns add-agent-trace $srm0 srm_agentO
$ns monitor—agent—-trace $srm0

$srm0 tracevar C1l_

$srm0 tracevar C2_

... ...
$ns delete—-agent-trace S$tcpl

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Nam Interface: Misc

_) Annotation
= Add textual explanation to your sim
$ns at 3.5 "$ns trace—annotate \"packet drop\""

) Set animation rate

Sns at 0.0 "$ns set—animation-rate 0.lms"

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 ™

Other Utilities in Ns

—> Nam editor
= Available as part of nam-1

_) Tcl debugger
= For source and documentation, see

http://www.isi.edu/nsnam/ns/ns-debugging.html

_, Topology generator
= http://www.isi.edu/nsnam/ns/ns-topogen.html

_) Scenario generator
= http://www.isi.edu/nsnam/ns/ns-scengeneration.html

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Other Ns Features

ﬁ> Other areas in wired domain
= LANSs
= Diffserv
Multicast
Full TCP
Applications like web-caching

) Wireless domain
= Ad hoc routing
= Mobile IP
= Satellite networking
= Directed diffusion (sensor networks)

0 0 [

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Other Ns Features

_) Emulator
= Connect simulator in a real network
= Can receive and send out live packets from/into the real
world

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Resources

_) Ns distribution download
= http://www.isi.edu/nsnam/ns/ns-build.html

) Installation problems and bug-fix
= http:/www.isi.edu/nsnam/ns/ns-problems.html

_) Ns-users mailing list
= Ns-users@isi.edu
= See http://www.isi.edu/nsnam/ns/ns-lists.html

= Archives from above URL

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Resources (cont...)

_)> Marc Greis’ tutorial
= http://www.isi.edu/nsnam/ns/tutorial

ﬁ} Ns-users archive

—, Ns-manual
= http://www.isi.edu/nsnam/ns/nsdocumentation.himl

_) Tcl (Tool Command Language)
= http://dev.scriptics.com/scripting
= Practical programming in Tcl and Tk, Brent Welch

) Otcl (MIT Object Tcl)
= ~otcl/doc/tutorial.html (in distribution)

\. Copyright © William C. Cheng

