CS551 End to End Argument [Saltzer81a]

Bill Cheng

http://merlot.usc.edu/cs551-f12

🛏 Copyright © William C. Cheng

The End-to-end Argument

- Deals with where to place protocol functionality (e.g., encryption, reliability, ordering, duplication surpression):
 - inside the network (in switching elements), or
 - at the edges

Not an arhchitecture in itself, but an architectural principle

- other architecture can use this principle
 - e.g., architectures for transaction management

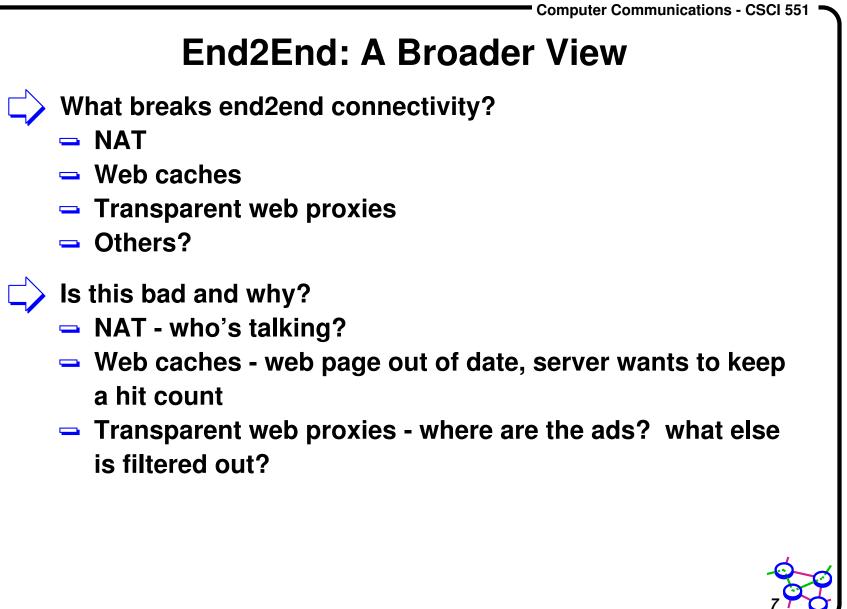
Key Ideas

- The end-to-end argument
 - don't duplicate functionality in multiple levels if you have to do it at the top anyway
 - apply to networking: the lower layers of the network are not the right place to implement *application-specific* functions (the lower network layers should implement basic and general functions)
 - o move these functions up and out
 - the network should be as transparent as technology permits
- Duplicate functionality has a cost associated with it
 - better spend it on other things
- Need to be general: Additional functionality may help some but may actually hurt other applications

Copyright © William C. Cheng

Example: Reliability

- Consider copying a file
 - want an end-to-end checksum, even if network guarantees reliable delivery
- Steps:
 - A reads from disk to memory; sends over network
 - network moves data from A to B
 - B gets data from network; writes to disk
 - Possible faults:
 - disk I/O errors, buffer overruns in NIC, memory errors, network corruption or congestion, computer crashes


Recommendation: in order to achieve reliable file transfer, application program must supply a file-transfer-specific, end-to-end reliable guarantee (and not rely on the data communication system)

Caveat: Performance

- Consider file copy again
- Reliability at physical, link, network, transport, application layers
 - need some physical redundancy (coding)
 - sometimes want link repair (Ethernet retransmission after collision, wireless links)
 - network level repair (TCP)
 - application level checks (checksum)
- multiple levels may be needed for *performance*, not correctness

Copyright © William C. Cheng

Difficulty: What Is the "End"?

Consider secure communication:

- me to my bank over HTTPS: browser to commerce server
- me from home to USC over ssh: app-level
- my computer to USC over a virtual private network (VPN): network-layer on my computer to USC network
- my computer to the wireless base-station over 802.11 with WEP: link-layer on my computer to wireless LAN
- my PIN number in my head to the ATM (?)
- Lower-layers have benefits (wider coverage)
 - but may increase risks
- End-to-end argument is *not* an absolute rule (like Occam's razor)
 - rather a guideline that helps in application and protocol design analysis

Copyright © William C. Cheng

Discussion

Summary

- don't put functionality inside the network when it would have to be duplicated at the ends anyway
- Context
 - came well before much of the Internet had been built
- Impact
 - arguably the most influential paper in the history of networking
 - measure of worth: not many papers are remembered after
 20 years
 - helpful for understanding the success of the Internet
 - people tend to use it to justify/dispute everything
 - active networks, sensor networks, etc.