
CS551
Warm-up Project #1

Bill Cheng

http://merlot.usc.edu/cs551-f12

1

 Computer Communications - CSCI 551

Copyright © William C. Cheng

typedef struct tagReqMsg {
 unsigned short MsgType;
 unsigned int Offset;
 unsigned char ServerDelay;
 unsigned int DataLen;
 char *Data;
} ReqMsg;

int SendReq(int n_socket)
{
 ReqMsg request;

 memset(&request, 0, sizeof(ReqMsg));
 /* fill up the request data structure */
 if (write(n_socket, &request, sizeof(ReqMsg)) == sizeof(ReqMsg)) {
 return 0;
 }
 switch (errno) {
 case EINTR: ...
 default:
 fprintf(stderr, "Unrecognized errno %1d in SendReq()\n", errno);
 break;
 }
 return (-1);
}

What does sizeof() do?

2

Do You Know What You Are
Sending To The Network?

 Computer Communications - CSCI 551

Copyright © William C. Cheng

Is sizeof(ReqMsg) 11?

typedef struct tagReqMsg {
 unsigned short MsgType;
 unsigned int Offset;
 unsigned char ServerDelay;
 unsigned int DataLen;
 char *Data;
} ReqMsg;

3

Memory Layout (Cont...)

 Computer Communications - CSCI 551

Copyright © William C. Cheng

0 1 2 3 4 5 10 11 12 13

unsigned short usAddrReqMsgType=(unsigned short)0xfe10;

request.MsgType = usAddrReqMsgType;
request.Offset = 0;
request.ServerDelay = 0;
request.DataLen = strlen("www.google.com");
request.Data = argv[3];

Filling the data structure

"www.google.com"

6 7 8 9

this is incorrect

4

Memory Layout (Cont...)

 Computer Communications - CSCI 551

Copyright © William C. Cheng

stream abstraction of TCP

int msg_buf_sz=10+strlen("www.google.com")+1;
char *msg_buf=(char*)malloc(msg_buf_sz);

if (msg_buf == NULL) { fprintf(stderr, "malloc() failed\n"); ... }
memset(msg_buf, 0, msg_buf_sz);
memcpy(msg_buf, &usAddrReqMsgType, 2); /* is this right? */
memcpy(&msg_buf[2], &request.Offset, 4); /* is this right? */
msg_buf[6] = &request.ServerDelay, 1;
memcpy(&msg_buf[7], &request.DataLen, 4); /* is this right? */
strcpy(&msg_buf[11], request.Data); /* is this right? */
...
free(msg_buf);need to call htons()/htonl() before sending and

ntohs()/ntohl() after receiving

in order to make sure a data object is 2/4 bytes long, you

can use uint16_t/unit32_t

there is really no difference between signed and unsigned

except in the context of negative numbers, then you

need to watch out for sign extension

5

TCP’s Stream Abstraction

 Computer Communications - CSCI 551

Copyright © William C. Cheng

0 1 2 3 4 5 6 7 ... 2047

1st write:

MT1 O1 D1

0 1 2 3 4 5 ... 2047

2nd write:

MT2 O2 D2

Receiver concatenates all bytes received

O1 DL1 D1 DL2 D2

0 1 2 3 4 5 ... 910

3rd write:

MT3 O3 D3

DL3 D3

Need: MT DL D1 D2 D3

(Note: Assuming you can write up to 2048 bytes at a time)

DL1

DL2

DL3

8 9 10 11

6 7 8 9 10 11

6 7 8 9 10 11

O

MT1 O2 O3MT2 MT3

6

 Computer Communications - CSCI 551

 Copyright © William C. Cheng

TCP’s Stream Abstraction (Cont...)

for warmup #1 (and warmup #1 only), you must read and

write one byte at a time

this means that if you call send() or write() with the

first argument being a socket descriptor, the 3rd

argument must be 1

7

 Computer Communications - CSCI 551

 Copyright © William C. Cheng

Warmup Project #1

ADDR → ADR_REQ

3 request types

FILESIZE → FSZ_REQ

GET → GET_REQ

client {adr|fsz|get} [-d delay] [-o offset] \

 [-m] hostname:port string

Client program commandline

0 1 2 3 4 5 ...

Type Offset DataDataLength

6 7 8 9 10 11

Message format

ADR_RPLY

3 reply types

FSZ_RPLY

GET_RPLY

ADR_FAIL

other

FSZ_FAIL

GET_FAIL

ALL_FAIL

server [-t seconds] [-m] port

Server program commandline

for requests, Data came from string in commandline

8

 Computer Communications - CSCI 551

 Copyright © William C. Cheng

Examples

client adr nunki.usc.edu:6001 www.cs.usc.edu

ADDR

<TAB>ADDR = 128.125.3.104

client fsz nunki.usc.edu:6001 /etc/passwd

FILE_SIZE

<TAB>FILESIZE = 1030

client get nunki.usc.edu:6001 /bin/less

GET

<TAB>FILESIZE = 104908, MD5 = f27df2e0...

client get -o 123 nunki.usc.edu:6001 /bin/less

<TAB>FILESIZE = 104785, MD5 = eccfd764...

openssl md5 /bin/less

MD5(/bin/less)= f27df2e0...

9

 Computer Communications - CSCI 551

 Copyright © William C. Cheng

Many Requirements

Ex:

separate compilation

Please read the spec yourself for details

buffer size limit

reading and writing one byte at a time

binary file contains binary data

Be careful with binary data

MD5 buffer contains binary data

write a function to print binary data correctly

if you use "%x" in printf(), the corresponding data

is assume to be a signed integer

if the most significant bit is 1, will cause sign-extension

Severe pentalty for failing make

Severe pentalty for using large memory buffers

Severe pentalty for any segmentation fault -- you must test

your code well

Severe pentalty for not using separate compilation or for

having all your source code in header files -- you must learn to

plan how to write your program

10

 Computer Communications - CSCI 551

 Copyright © William C. Cheng

Some Major Requirements for All Projects

run "top" on nunki

Never do busy-wait

don’t stay in a tight loop and poll

use blocking I/O and sockets

just sleep for 50-100 milliseconds before poll again

Break up your code into modules

compile the modules separately, at least one rule per

module per rule in the Makefile

a separate rule to link all the modules together

if your program requites additional libraries, add them

to the link stage

To receive full credit for separate compilation

to create an executable, at a minimum, you must run the

compiler at least twice and the linker once

for warmup #1, there are two executables, they can share

modules

11

 Computer Communications - CSCI 551

 Copyright © William C. Cheng

Separate Compilation

Don’t design your program "procedurally"

You need to learn how to write functions!

a function has a well-defined interface

pre-conditions

what are the meaning of the parameters

what does it suppose to return

what must be true when the function is entered

post-conditions

what must be true when the function returns

you assume that these are true

you can verify it if you want

you design your program by making designing a sequence

of function calls

12

 Computer Communications - CSCI 551

 Copyright © William C. Cheng

Code Design - Functional vs. Procedural

13

 Computer Communications - CSCI 551

 Copyright © William C. Cheng

Sticky Issues

wait for all child threads/processes to terminate before the

server terminates itself

must not kill child threads/processes abruptly

Your server must shutdown gracefully

send signals to child threads/processes

a child thread/process must be prepared to handle

this and self-terminates

a child thread/process should react as soon as

possible

since we are read the socket one byte as a time, you

should check if it’s time to quit after reading a byte or

if select() times out (after ~100ms)

since we are writing to the socket one byte as a time,

you should check if it’s time to quit after writing out a

byte

should handle SIGCHLD explicitly (i.e., need to reap

child processes)

14

 Computer Communications - CSCI 551

 Copyright © William C. Cheng

Sticky Issues (Cont...)

Your server must shutdown gracefully (cont...)

in order to do this, the server needs to know which child

thread/process has terminated

keep a list of child thread/process IDs

more trickly if you use child processes

watch out for a race condition

call waitpid() in SIGCHLD handler

15

 Computer Communications - CSCI 551

 Copyright © William C. Cheng

Race Condition

Race condition (only if you use fork())

void sigchld_handler(...) {
 for (;;) {
 pid = waitpid((pid_t)(-1), &status, WNOHANG);
 if (pid == 0) break; /* == 0 for Linux, <= for Solaris */
 remove_from_list(pid);
 }
}

SIGCHLD handler:

for (;;) {
 newsockfd = accept(nSocket, ...);
 if (newsockfd > 0) {
 int pid=fork();

 if (pid == 0) {
 close(nSocket);
 child_processing(newsockfd);
 exit(0);
 }
 close(newsockfd);
 add_to_list(pid);
 }
}

server infinite loop:

what if remove_from_list() happens first?

16

 Computer Communications - CSCI 551

 Copyright © William C. Cheng

Race Condition (Cont...)

Fix for the race condition (only if you use fork())

for (;;) {
 newsockfd = accept(nSocket, ...);
 if (newsockfd > 0) {
 sigprocmask(SIG_BLOCK, ...);
 int pid=fork();

 if (pid == 0) {
 close(nSocket);
 sigprocmask(SIG_UNBLOCK, ...);
 child_processing(newsockfd);
 exit(0);
 }
 close(newsockfd);
 add_to_list(pid);
 sigprocmask(SIG_UNBLOCK, ...);
 }
}

block SIGCHLD until add_to_list() is finished

Maybe it’s easier just to use pthread and mutex

also warms you up for warmup project #2

but you need to learn how to deliver signal to a specific

thread - see beginning of Warmup Project #2 slides

