7 Computer Communications - CSCI 551 N

CS551
Warm-up Project #1

Bill Cheng
http://merlot.usc.edu/cs551-f12

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Do You Know What You Are
Sending To The Network?

typedef struct tagReqMsg {
unsigned short MsgType;
unsigned int Offset;
unsigned char ServerDelay;
unsigned int Datalen;
char *Data;

} ReqgMsg;

int SendReqg(int n_socket)

{
RegMsg request;

memset (&request, 0, sizeof (RegMsgqg));

/* £ill up the request data structure */

if (write(n_socket, &request, sizeof (RegMsg)) == sizeof (RegMsg)) {
return O;

}

switch (errno) {

case EINTR:
default:
fprintf (stderr, "Unrecognized errno %1d in SendReq() \n", errno);
break;
}
return (-1); _) What does sizeof () do? °
} ' —C)
O]
2 J
\. Copyright © William C. Cheng

G> Is sizeof (RegqMsg) 11?2
typedef struct tagRegMsg {
unsigned int Offset;

unsigned int Datalen;
char *Data;
} ReqgMsg;

_ Filling the data structure

request .MsgType
request .Offset 0;

request.ServerDelay = 0;
request .Datalen
request .Data argv[3];

01 2 3 4 5 6 7 8

Memory Layout (Cont...)

unsigned short MsgType;

unsigned char ServerDelay;

unsigned short usAddrReqMsgType=(unsigned short)0xfelO;

usAddrRegMsgType;

strlen ("www.google.com") ;

Computer Communications - CSCI 551 N

9 10 11 12 13

"www.google.com"

= this is incorrect
\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Memory Layout (Cont...)

= stream abstraction of TCP

int msg_buf_sz=10+strlen ("www.google.com")+1;
char *msg buf=(char*)malloc (msg buf_ sz);

if (msg_buf == NULL) { fprintf (stderr, "malloc() failed\n");
memset (msg_buf, 0, msg_buf_ sz);

memcpy (msg_buf, &usAddrRegMsgType, 2); /* is this right? */
memcpy (&§msg_buf[2], &request.Offset, 4); /* is this right? */
msg_buf[6] = &request.ServerDelay, 1;

memcpy (&§msg_buf[7], &request.Datalen, 4); /* is this right? */
strcpy (&§msg_buf[1l1l], request.Data); /* is this right? */

= nedeetdrealbtons () /htonl () before sending and
ntohs () /ntohl () after receiving
= [n order to make sure a data object is 2/4 bytes long, you

can use uintl6_t/unit32_t
= there is really no difference between sighed and unsigned
Q except in the context of hegative numbers, then you

need to watch out for signh extension
“—c
c®

4 J

\. Copyright © William C. Cheng

TCP’s Stream Abstraction

Computer Communications - CSCI 551 N

= 1st write: (Note: Assuming you can write up to 2048 bytes at a time)
0O 1 2 3 4 5 6 7 8 9 10 11 2047
MTH1 O1 DL1 D1
= 2nd write:
01 2 3 4 5 6 7 8 9 10 11 2047
MT2 02 DL2 D2
= 3rd write:
0O 12 3 4 5 6 7 8 9 10 11 910
MT3 03 DL3 D3
— Receiver concatenates all bytes received
MT1| O1 DL1 D1 [MT2| 02 DL2 D2 |[MT3| O3 DL3 D3
Need: | mT o) DL | D1 D2 | D3 O—
s PG
\. Copyright © William C. Cheng J/

7 Computer Communications - CSCI 551 N

TCP’s Stream Abstraction (Cont...)

= for warmup #1 (and warmup #1 only), you must read and
write one byte at a time
Q this means that if you call send () or write () with the
first argument being a socket descriptor, the 3rd
argument must be 1

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

-
Warmup Project #1
ﬁ> 3 request types G> 3 reply types G> other
= ADDR — ADR_REQ = ADR_RPLY = ADR_FAIL
= FILESIZE — FSZ REQ = FSZ RPLY = FSZ_FAIL
= GET —» GET_REQ = GET_RPLY = GET_FAIL
= ALL_FAIL

ﬁ> Client program commandline
—= client {adr|fsz|get} [-d delay] [-o offset] \
[-m] hostname:port string
_) Message format
0O 1 2 3 4 5 6 7 8 9 10 11
Type Offset DatalLength Data

—= for requests, Data came from string in commandline

ﬁ> Server program commandline
= server [-t seconds] [-m] port Q—C

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Examples

_) ADDR

client adr nunki.usc.edu:6001 www.cs.usc.edu
<TAB>ADDR = 128.125.3.104

_) FILE_SIZE

client fsz nunki.usc.edu:6001 /etc/passwd
<TAB>FILESIZE = 1030

_) GET

client get nunki.usc.edu:6001 /bin/less
<TAB>FILESIZE = 104908, MD5 = £27df2e0...

client get -o 123 nunki.usc.edu:6001 /bin/less
<TAB>FILESIZE = 104785, MD5 = eccfd764...

openssl md5 /bin/less

MD5 (/bin/less)= £27df2e0... oY
\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Many Requirements

G> Please read the spec yourself for details
= EX:
Q separate compilation
Q buffer size limit
Q reading and writing one byte at a time

) Be careful with binary data
= binary file contains binary data
= MD5 buffer contains binary data
= write a function to print binary data correctly
Q if you use "$x" in print£ (), the corresponding data
Is assume to be a signhed integer
Q if the most significant bit is 1, will cause sign-extension

(-)
oY
>

9

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Some Major Requirements for All Projects
ﬁ> Severe pentalty for failing make
G> Severe pentalty for using large memory buffers

ﬁ} Severe pentalty for any segmentation fault -- you must test
your code well

ﬁ> Severe pentalty for not using separate compilation or for
having all your source code in header files -- you must learn to
plan how to write your program

_) Never do busy-wait
= run "top" on nunki
—= don’t stay in a tight loop and poll
Q Just sleep for 50-100 milliseconds before poll again
= use blocking I/O and sockets

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Separate Compilation

G> Break up your code into modules
= compile the modules separately, at least one rule per
module per rule in the Makefile
— a separate rule to /ink all the modules together
Q if your program requites additional libraries, add them
to the link stage

ﬁ> To receive full credit for separate compilation
= to create an executable, at a minimum, you must run the
compiler at least twice and the linker once
= for warmup #1, there are two executables, they can share
modules

\. Copyright © William C. Cheng J/

7 Computer Communications - CSCI 551 N

Code Design - Functional vs. Procedural
G> Don’t design your program "procedurally”

—) You need to learn how to write functions!
= a function has a well-defined interface
Q what are the meaning of the parameters
QO what does it suppose to return
= pre-conditions
Q what must be true when the function is entered
Q you assume that these are true
& you can verify it if you want
= post-conditions
Q what must be true when the function returns
= you design your program by making designing a sequence
of function calls

(-)
oY
>

12
\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Sticky Issues

G> Your server must shutdown gracefully
= wait for all child threads/processes to terminate before the
server terminates itself
Q must not kill child threads/processes abruptly
Q send signals to child threads/processes
& a child thread/process must be prepared to handle
this and self-terminates
<& a child thread/process should react as soon as
possible
<& since we are read the socket one byte as a time, you
should check if it’s time to quit after reading a byte or
if select () times out (after ~100ms)
& since we are writing to the socket one byte as a time,

you should check if it’s time to quit after writing oui a
byte &0
3 J

1

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

G> Your server must shutdown gracefully (cont...)

= [n order to
thread/pro

Q keep a list of child thread/process IDs
Q more trickly if you use child processes
<& should handle SIGCHLD explicitly (i.e., need to reap

child processes)
& call waitpid () in SIGCHLD handler

< watc

\. Copyright © William C. Cheng

Sticky Issues (Cont...)

do this, the server needs to know which child
cess has terminated

h out for a race condition

7 Computer Communications - CSCI 551 N

Race Condition

G> Race condition (only if you use fork ())
= SIGCHLD handler:

void sigchld handler(...) {

for (;;) {
pid = waitpid((pid_t) (-1), &status, WNOHANG) ;
if (pid == 0) break; /* == 0 for Linux, <= for Solaris */

remove_from list (pid);
}
}

= server infinite loop:

for (;;) {
newsockfd = accept (nSocket, ...);
if (newsockfd > 0) {
int pid=fork();

if (pid == 0) {
close (nSocket) ;
child_processing (newsockfd);
exit (0);

}

close (newsockfd) ;

add_to_1list (pid);

}. .
= What if remove_from list () happens first? oY
\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Race Condition (Cont...)

G> Fix for the race condition (only if you use fork ())
= block SIGCHLD until add_to _1list () is finished

for (;;) {
newsockfd = accept (nSocket, ...);

if (newsockfd > 0) {
sigprocmask (SIG_BLOCK, ...);

int pid=fork();

if (pid == 0) {
close (nSocket) ;
sigprocmask (SIG_UNBLOCK, ...);
child_processing (newsockfd);
exit (0);

}

close (newsockfd) ;

add_to_1list (pid);

sigprocmask (SIG_UNBLOCK, ...);

}
ﬁ} Maybé it’s easier just to use pthread and mutex

= also warms you up for warmup project #2

= but you need to learn how to deliver signal to a specific
thread - see beginning of Warmup Project #2 slides °&°
16 @
J

\. Copyright © William C. Cheng

