
CS551
Warm-up Project #2

Bill Cheng

http://merlot.usc.edu/cs551-f12

1

 Computer Communications - CSCI 551

Copyright © William C. Cheng

2

 Computer Communications - CSCI 551

 Copyright © William C. Cheng

Multi-threading Exercise

good source is the book by Nichols, Buttlar, and Farrell

‘‘Pthreads Programming’’, O’Rielly & Associates, 1996

Make sure you are familiar with the pthreads library

you must learn how to use mutex and condition variables

correctly

pthread_mutex_lock()/pthread_mutex_unlock()

pthread_cond_wait()/pthread_cond_signal()/

pthread_cond_broadcast()

you must learn how to handle UNIX signals

pthread_sigmask()/sigwait()

pthread_setcancelstate()

pthread_setcanceltype()

pthread_testcancel()

#include <pthread.h>
/* #include <thread.h> */

thread_t user_threadID;
sigset_t new;

void *handler(), interrupt();

main(int argc, char *argv[]) {
 sigemptyset(&new);
 sigaddset(&new, SIGINT);

 pthread_sigmask(SIG_BLOCK, &new, NULL);
 pthread_create(&user_threadID, NULL, handler, argv[1]);
 pthread_join(user_threadID, NULL);

 printf("thread handler, %d exited\n",user_threadID);
 sleep(2);
 printf("main thread, %d is done\n", thr_self());
} /* end main */

3

 Computer Communications - CSCI 551

 Copyright © William C. Cheng

pthread_sigmask()

Look at the man pages of pthread_sigmask() on nunki and

try to understand the example there

designate child thread to handler SIGINT

parent thread blocks SIGINT

struct sigaction act;

void *
handler(char argv1[])
{
 act.sa_handler = interrupt;
 sigaction(SIGINT, &act, NULL);
 pthread_sigmask(SIG_UNBLOCK, &new, NULL);
 printf("\n Press CTRL-C to deliver SIGINT\n");
 sleep(8); /* give user time to hit CTRL-C */
}

void
interrupt(int sig)
{
 printf("thread %d caught signal %d\n", thr_self(), sig);
}

4

 Computer Communications - CSCI 551

 Copyright © William C. Cheng

pthread_sigmask()

Child thread example

child thread unblocks SIGINT

child thread is designated to handle SIGINT, no other

thread will get SIGINT

line at a bank

Ex:

5

Queueing Abstraction

 Computer Communications - CSCI 551

Copyright © William C. Cheng

Q1
µ

λ

µ
S2

S1

multiprocessor executing jobs from a shared job queue

ER

6

Arrivals & Departures

 Computer Communications - CSCI 551

Copyright © William C. Cheng

Q1
µ

λ

µ
S2

S1

Q1

S2
S1

0 t

ai : arrival time

di : departure time

si : service time

ri : response (system) time

qi : queueing time

d1

C1

a1

 s1

C1

 r1

C2

a2

 s2

C2

 r2

d2

d4

7

Arrivals & Departures (Cont...)

 Computer Communications - CSCI 551

Copyright © William C. Cheng

Q1
µ

λ

µ
S2

S1

Q1

S2
S1

0 t

q1, q2, q3 ~ 0

q4 > 0

d3

 r4

 s4

C4

a4

C4

 q4

 s3

 r3

C3

a3

C3

C1

C1

C2

C2

Execution: remove an event from the head of queue,

"execute" the event (notify the corresponding object so it can

insert the next event)

Insert into the event queue according to timestamp of a new

event; insertion may cause additional events to be deleted

or inserted

8

Event Driven Simulation

 Computer Communications - CSCI 551

Copyright © William C. Cheng

An event queue is a sorted list of events according to

timestamps; smallest timestamp at the head of queue

Object oriented: every object has a "next event" (what it will

do next if there is no interference), this event is inserted into

the event queue

Potentially repeatable runs (if the same seed is used to

initialize random number generator)

Q1 : empty

Initially:

A : [a1, create(C1)]

Ex: 4 objects, A (arrival), Q1 (passive object, does not

generate events), S1, S2

9

Event Driven Simulation (Cont...)

 Computer Communications - CSCI 551

Copyright © William C. Cheng

S1 : NULL

S2 : NULL

only one event, next event to fire is [a1, create(C1)]

create(C1), Q1->enqueue(C1)

Q1->dequeue(C1), S1->serve(C1)

A : [a2, create(C2)] S1 : [d1, destroy(C1)]

S2 : NULLQ1 : empty

min(a2, d1) = a2, next event to fire is [a2, create(C2)]

create(C2), Q1->enqueue(C2)

Q1->dequeue(C2), S2->serve(C2)

A : [a3, create(C3)] S1 : [d1, destroy(C1)]

S2 : [d2, destroy(C2)]Q1 : empty

10

Event Driven Simulation (Cont...)

 Computer Communications - CSCI 551

Copyright © William C. Cheng

min(a3, d1, d2) = d1, next event to fire is [d1, destroy(C1)]

destroy(C1)

A : [a3, create(C3)] S1 : NULL

S2 : [d2, destroy(C2)]Q1 : empty

min(a3, d2) = a3, next event to fire is [a3, create(C3)]

A : [a4, create(C4)] S1 : [d3, destroy(C3)]

S2 : [d2, destroy(C2)]

create(C3), Q1->enqueue(C3)

Q1->dequeue(C3), S1->serve(C3)

Q1 : empty

Q1 : C4

min(a4, d2, d3) = a4, next event to fire is [a4, create(C4)]

A : [a5, create(C5)] S1 : [d3, destroy(C3)]

S2 : [d2, destroy(C2)]

create(C4), Q1->enqueue(C4)

etc.

11

Event Driven Simulation (Cont...)

 Computer Communications - CSCI 551

Copyright © William C. Cheng

Q1

S2
S1

0 t

C1

C1

a1

d1

C2

C2

a2

d2 d4

C4

a4

C4 C3

d3

C3

a3

12

Time Driven Simulation

 Computer Communications - CSCI 551

Copyright © William C. Cheng

Every active object is a thread

To execute a job for x msec, the thread sleeps for x msec

Let your machine decide which thread to run next

(irreproducible results)

Compete for resources (such as Q1), must use mutex

it may not get woken up more than x msec later,

and sometimes, a lot more than x msec later

nunki.usc.edu does not run a realtime OS

you need to decide if the extra delay is reasonable

or it is due to a bug in your code

a customer is a passive object, it gets passed around

You will need to implement 3 threads (or 1 main thread and

3 child threads)

13

Time Driven Simulation (Cont...)

 Computer Communications - CSCI 551

Copyright © William C. Cheng

the arrival thread sits in a loop

sleeps for an interval, trying to match a given

interarrival time (from trace or coin flip)

wakes up, creates a customer object, enqueues the

customer to Q1, and goes back to sleep

if the Q1 was empty before, need to signal or broadcast

a queue-not-empty condition

two server threads

initially blocked, waiting for the queue-not-empty

condition to be signaled

(cont...)

14

Time Driven Simulation (Cont...)

 Computer Communications - CSCI 551

Copyright © William C. Cheng

two server threads (cont...)

when it is unblocked, if Q1 is not empty, dequeues a

customer, sleeps for an interval matching the

service time of the customer, eject the customer from

the system, check if Q1 is empty, etc.

if there is no work to perform, go wait for the

queue-not-empty condition to be signaled

arrival thread will stop generating customers and terminate

<Cntrl+C>

server threads must finish serving its current customer

the arrival thread needs to clear out Q1

must print statistics for all customer seen

Q1 : empty

Initially:

A : sleep(α1=a1)

Notation:

S1 : idle

S2 : idle

A wakes up at a1: create(C1), Q1->enqueue(C1)

Q1->dequeue(C1), S1->serve(C1)

A : sleep(α2) S1 : sleep(β1)

S2 : idleQ1 : empty

A wakes up at a1+α2: create(C2), Q1->enqueue(C2)

Q1->dequeue(C2), S2->serve(C2)

A : sleep(α3) S1 : sleeping...

S2 : sleep(β2)Q1 : empty

15

Time Driven Simulation (Cont...)

 Computer Communications - CSCI 551

Copyright © William C. Cheng

αi : inter-arrival time for customer i (ai-ai-1), a0=0

βi : service time of customer i

etc.

16

Coin Flipping

 Computer Communications - CSCI 551

Copyright © William C. Cheng

Uniform distribution

probability mass function

(pmf), denoted by f(x)

Probability Distribution Function (PDF), denoted by F(x)

1

x1

F (x) =

0 x < 0
x 0 ≤ x ≤ 1
1 x > 1

F (x) =

0 x < 0
x 0 ≤ x ≤ 1
1 x > 1

F (x) =
∫

x

−∞

f(w)dwF (x) =
∫

x

−∞

f(w)dw

1

x1

f(x) =

{

1 0 ≤ x ≤ 1
0 otherwise

f(x) =

{

1 0 ≤ x ≤ 1
0 otherwise

∫

∞

−∞

f(x)dx = 1
∫

∞

−∞

f(x)dx = 1

How do you flip a coin according to this distribution?

17

Coin Flipping (Cont...)

 Computer Communications - CSCI 551

Copyright © William C. Cheng

x

f(x)f(x)
Think about discrete case:

x

3

13

15

22
23

f(x)f(x)

bucket

1

f(x)f(x)

3

7

10

2

Add
them
up:

x

3

13

15

22
23

rr

Flip a coin
between 0

and 23

r = drand48()*23r

1 2 3 4 5

r lies between 3 and 13,

so we have randomly

chosen bucket #2

r

Q: What were we doing when we "added them up"?

x

f(x)f(x)

Hint: 0 ≤ F (x) ≤ 1 for any x0 ≤ F (x) ≤ 1 for any x

1

x

F (x)F (x)rr r = drand48()
w = ?
r
w

ww

can numerically compute w

18

Coin Flipping (Cont...)

 Computer Communications - CSCI 551

Copyright © William C. Cheng

A: We were doing "integration"

Exponential distribution

19

Coin Flipping (Cont...)

 Computer Communications - CSCI 551

Copyright © William C. Cheng

f(x) = me

�mx

f(x) = me

�mxm

x

F (x) =

Z

x

0

f(y)dy = 1� e

�mx

F (x) =

Z

x

0

f(y)dy = 1� e

�mx

1

x

1

x

rr
F (x)F (x)

r = drand48()
w = ?
r
w

ww

Note: inter-arrival time of
a Poisson process is
Exponentially distributed

20

Calculating Statistics

 Computer Communications - CSCI 551

Copyright © William C. Cheng

arrival thread timeout (read clock)

lock & unlock stdout to print enter queue msg

try lock mutex to leave Q

lock & unlock stdout to print leave queue and begin service msgs

begin service

leave server

lock & unlock stdout to print msg

lock & unlock stdout to print arrival msg

unlock mutex

time in Q

time in server

overhead?

charge to no one

Q

µ
λ S enter Q (read clock)

try lock mutex to enter Q

leave Q (read clock)

unlock mutex

time

time between begin service and leave server is the

amount of time in select()

select()?

Var[X] = E[X
 2

] - (E[X])
 2

Standard deviation is the squareroot of variance

21

 Computer Communications - CSCI 551

 Copyright © William C. Cheng

Mean and Standard Deviation

for n samples, add up all the time and divide by n

Average time

same a fraction of time the server is busy

Average number of customer at a server

1

time
0

Average number of customer at Q1

1

time
0

2

3

