7 Computer Communications - CSCI 551 N

CS551
Warm-up Project #2

Bill Cheng
http://merlot.usc.edu/cs551-f12

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Multi-threading Exercise

G> Make sure you are familiar with the pthreads library

= good source is the book by Nichols, Buttlar, and Farrell
“Pthreads Programming’’; O’Rielly & Associates, 1996

= you must learn how to use mutex and condition variables
correctly
Q pthread_mutex_lock () /pthread_mutex_unlock ()
Q pthread_cond_wait () /pthread_cond signal () /

pthread_cond broadcast ()

= you must learn how to handle UNIX signals
Q pthread_sigmask () /sigwait ()
Q pthread_setcancelstate()
Q pthread_ setcanceltype ()
Q pthread testcancel ()

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

pthread sigmask()

G> Look at the man pages of pthread_sigmask () on nunki and
try to understand the example there
= designate child thread to handler SIGINT
= parent thread blocks SIGINT

#include <pthread.h>
/* #include <thread.h> */

thread t user threadID;
sigset_t new;

void *handler (), interrupt();
main(int argc, char *argv[]) {
sigemptyset (&new) ;
sigaddset (&new, SIGINT);

pthread_sigmask (SIG_BLOCK, &new, NULL);
pthread_create (&user_threadID, NULL, handler, argv[l]);

pthread_join (user_threadID, NULL);
printf ("thread handler, %d exited\n",user_threadID);

sleep(2);
printf ("main thread, %d is done\n", thr_self()); A
} /* end main */ &0

3 J)

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

pthread sigmask()

) Child thread example
= child thread unblocks SIGINT

struct sigaction act;

void *
handler (char argvl|[])
{

act.sa_handler = interrupt;

sigaction (SIGINT, &act, NULL);

pthread_sigmask (SIG_UNBLOCK, &new, NULL);
printf ("\n Press CTRL-C to deliver SIGINT\n");
sleep(8); /* give user time to hit CTRL-C */

}

void
interrupt (int sig)

printf ("thread %d caught signal %d\n", thr_self(), sigqg);

= child thread is designated to handle SIGINT, no other
thread will get SIGINT

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Queueing Abstraction

r—]

»@u—>
—"@u—’

G> Ex:

= line at a bank
= multiprocessor executing jobs from a shared job queue

= ER

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Arrivals & Departures

= @; : arrival time
Qi O = d; : departure time
1) i
] = s;: service time
{)—’u = [: response (system) time
= (]; : queueing time
C; Cs
“-H:% .
— S1
u d d
S1 'y 1 2 -
S2 " -
! |-t So >
E :< Fo !
a1§ azi
R)
C1 C2 0&0
\\ Copyright © William C. Cheng 61T O

7 Computer Communications - CSCI 551 N

Arrivals & Departures (Cont...)

Qa Cu
|
:u
G C3
L A A
- I3
T .
82 S—— -
= Q1,092,943 ~ 0
i = q4>0
as!
Q1 0 T T 3‘ >t
\ .
C; G, C3 -
794

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Event Driven Simulation

G> An event queue is a sorted list of events according to
timestamps; smallest timestamp at the head of queue

_) Object oriented: every object has a "next event" (what it will
do next if there is no interference), this event is inserted into
the event queue

G> Execution: remove an event from the head of queue,
"execute” the event (notify the corresponding object so it can
insert the next event)

ﬁ> Insert into the event queue according to timestamp of a new
event; insertion may cause additional events to be deleted
or inserted

ﬁ} Potentially repeatable runs (if the same seed is used to
D

initialize random number generator) Y
8 @
)

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Event Driven Simulation (Cont...)

G> Ex: 4 objects, A (arrival), Q1 (passive object, does not
generate events), S1, S2

= [nitially:
Q A :[ajy,create(Cq)] Q S1:NULL
Q Q1 :empty Q S2:NULL

= onhly one event, next event to fire is [a{, create(C+)]
create(C4), Q1->enqueue(C,)
Q1->dequeue(C4), S1->serve(C,)
Q A :[ay, create(C»)] Q S1:[dy, destroy(C¢)]
Q Q1 :empty Q S2:NULL
= min(a,y, d{) = a5, next event to fire is [a5, create(C»,)]
create(C,), Q1->enqueue(C,)
Q1->dequeue(C,), S2->serve(C»)
Q A :[a3, create(Csj)] Q S1:[dy, destroy(Cq)1] .

Q Q1 :empty Q S2:[d,, destroy(C»)] 9
)

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Event Driven Simulation (Cont...)

= min(as, dy, ds) = dy, next event to fire is [d;, destroy(C+)]

destroy(C,)
Q A :[aj, create(Cs)] Q S1:NULL
Q Q1 :empty Q S2:[d,, destroy(C,)]

= min(as, do) = a3, next event to fire is [a3, create(Cj)]
create(Cs3), Q1->enqueue(Cs)
Q1->dequeue(C;), S1->serve(Cs)

Q A :[a4, create(Cy)] Q S1:[dj, destroy(Cj)]
Q Q1 :empty Q S2:[d,, destroy(C,)]
= min(ay, do, d3) = a4, next event to fire is [a4, create(C,)]

create(C;), Q1->enqueue(C,)

Q A :[as, create(Cs)] Q S1:[dj, destroy(Cj)]
Q Q1:C, Q S2:[d,, destroy(C»)]
= efc.
Q—
10 PG
\. Copyright © William C. Cheng J/

7 Computer Communications - CSCI 551 N

Event Driven Simulation (Cont...)

C; C, Cs
A
d, d ds
g; \ i -
A
aq do ds
R)
C; G, Cs

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Time Driven Simulation

) Every active object is a thread
= a customer is a passive object, it gets passed around

ﬁ} To execute a job for x msec, the thread sleeps for x msec
= nunki.usc.edu does not run a realtime OS
= it may not get woken up more than x msec later,
and sometimes, a lot more than x msec later
Q you need to decide if the extra delay is reasonable
or it is due to a bug in your code

_) Let your machine decide which thread to run next
(irreproducible results)

ﬁ> Compete for resources (such as Q1), must use mutex

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Time Driven Simulation (Cont...)

G> You will need to implement 3 threads (or 1 main thread and
3 child threads)
= the arrival thread sits in a loop
Q sleeps for an interval, trying to match a given
interarrival time (from trace or coin flip)
Q wakes up, creates a customer object, enqueues the
customer to Q1, and goes back to sleep
Q if the Q1 was empty before, need to signal or broadcast
a queue-not-empty condition
= two server threads
Q Initially blocked, waiting for the queue-not-empty
condition to be signaled
Q (cont...)

\. Copyright © William C. Cheng J/

7 Computer Communications - CSCI 551 N

Time Driven Simulation (Cont...)

= two server threads (cont...)
Q when it is unblocked, if Q1 is not empty, dequeues a
customer, sleeps for an interval matching the
service time of the customer, eject the customer from
the system, check if Q1 is empty, etc.
Q if there is no work to perform, go wait for the
queue-not-empty condition to be signaled

G> <Cntrl+C>
= arrival thread will stop generating customers and terminate
Q the arrival thread needs to clear out Q1
— server threads must finish serving its current customer
= must print statistics for all customer seen

\. Copyright © William C. Cheng

1

Time Driven Simulation (Cont...)

G> Notation: «; : inter-arrival time for customer i (a;-a;.;), ayp=0

Initially:
Q A :sleep(aq=aq) Q S1:idle
Q Q1 :empty Q S2:idle

A wakes up at a;: create(C,), Q1->enqueue(C,)

Q A :sleep(ay) Q S1:sleep(B1)
Q Q1 :empty Q S2:idle
A wakes up at a;+0,: create(C,), Q1->enqueue(C,)

Q A :sleep(os) Q S1 : sleeping...
Q Q1 :empty Q S2 : sleep(p»)
etc. -
{)
@
15 J

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

B; : service time of customer i

Q1->dequeue(C,), S1->serve(C,)

Q1->dequeue(C,), S2->serve(C»)

Computer Communications - CSCI 551 N
Coin Flipping

ﬁ> Uniform distribution
= probability mass function
(pmf), denoted by f{(x) ;

/: f(x)dx =1

1 0<5z<L1

/ (=)= { 0 otherwise

L

-
1 X

= Probability Distribution Function (PDF), denoted by F(x)
F@)= [fw)dw

i 0 <0
\F(x)z{x 0<z<1

!
©
16 PG)
\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Coin Flipping (Cont...)
G> How do you flip a coin according to this distribution?

G> Think about discrete case: f(y) S / f(z)

X
ﬁ[::::::::
N
-
X
Flip a coin
between 0 B I
and 23 b R _) rlies between 3 and 13,
r—>
ﬁ> so we have randomly
r=drand48()*23 chosen bucket #2
o A
- Y
X 1770
\. Copyright © William C. Cheng J/

7 Computer Communications - CSCI 551 N

Coin Flipping (Cont...)

ﬁ> Q: What were we doing when we "added them up"?
= A:We were doing "integration™

; /(@)
e

AN

X

G>Hint: 0<F(xr) <1 foranyzx

A
) I
r ™ F(z) T=drand48()
w="?
|
w X
= can numerically compute w O
O
\\ Copyright © William C. Cheng 187 O

Computer Communications - CSCI 551 N

Coin Flipping (Cont...)

_)> Exponential distribution

A : : i
| _ Note: inter-arrival time of
n / (x) =me " a Poisson process is
/ Exponentially distributed
|
X
A
J
\ T —mIT
F@)= [f)dy=1-e
L
X
A
)
ri r = drand48 ()
F(ZE) w="2?
X G
w
Coy
197 Q)

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Calculating Statistics

arrival thread timeout (read clock) 7
lock & unlock stdout to print arrival msg overhead?
try lock mutex to enter Q1

r— 1| H@—> enter Q (read clock) *}
o H unlock mutex 1

lock & unlock stdout to print enter queue msg T |time in Q

try lock mutex to leave Q-

leave Q (read clock) 1

unlock mutex T

lock & unlock stdout to print leave queue and begin service msgs T [time in server

begin service T
4

select () ?

leave server charge to no one

lock & unlock stdout to print msg

time

= time between begin service and leave server is the
amount of time in select () o

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Mean and Standard Deviation

_) Average time
= for n samples, add up all the time and divide by n

) Average number of customer at a server
= same a fraction of time the server is busy

]

) Average number of customer at Q1
A

" |
time

3_
S R L I
1__
0 F»
time
ﬁ} Standard dewatlon is the squareroot of variance
= Var[X] = E[X?] - (E[X])? °&°
21 S

. Copyright © William C. Cheng

