
CS551
Final Project Part (2)

Bill Cheng

http://merlot.usc.edu/cs551-f12

1

 Computer Communications - CSCI 551

Copyright © William C. Cheng

2

 Computer Communications - CSCI 551

 Copyright © William C. Cheng

SERVANT Network

nunki:14013

nunki:14012

nunki:14014

nunki:14008

nunki:14015

nunki:14009

nunki:14010

nunki:14003

startup-14003.ini

[init]
InitNeighbors=3
MinNeighbors=1

[beacons]
nunki:14012=
nunki:14013=
nunki:14014=
nunki:14015=

nunki:14004

startup-14010.ini

[init]
InitNeighbors=2
MinNeighbors=1

[beacons]
nunki:14012=
nunki:14013=
nunki:14014=
nunki:14015=

nunki:14007

init_neighbor_list

nunki:14009
nunki:14015

Part (2): think google and napster (35% project grade)

Store

Search

Get

Delete
3

 Computer Communications - CSCI 551

 Copyright © William C. Cheng

Part (2) Message Types

probabilistic storing of files

node that initiates STORE always store the file

use NeighborStoreProb to decide if it forwards to a

particular neighbor

when a node gets a STORE request, use StoreProb to

decide if it should cache a copy of the file

probabilistic/opportunistic caching of files

node that initiates GET always store the file

if forwarding GET response, use CacheProb to decide

if it should cache a copy of the file

4

 Computer Communications - CSCI 551

 Copyright © William C. Cheng

Part (2) Is Based On Part (1)

no JOIN

every regular node will start with a good

init_neighbor_list file

But,

make sure your code can parse it

no CHECK

do not initiate or forward CHECK messages

the startup configuration file has NoCheck=1

[metadata]
FileName=blondie1.mp3
FileSize=4885526
SHA1=730764e28a5b66e3f95ceadc976c038d389bd89e
Nonce=b56dba4b2ec8f224de8fc45d6041cdb9f2db9d69
Keywords=categories audio mp3 artist Blondie \
 title Heart of Glass \
 url http://www.blondie.net/ \
 additional_keywords debra harry
Bit-vector= \
 110000100000000420020000000000000000000000000000 \
 100000000000000000200000000000000000010000010004 \
 000000000004800000000800000000000000000000000000 \
 000000000000000000100008800000000000000040048400 \
 000002100000000000000810000000000000200002000200 \
 0000000000000000

5

Keywords

 Computer Communications - CSCI 551

Copyright © William C. Cheng

store blondie1.mp3 30 \
 categories="audio mp3" \
 artist="Blondie" \
 title="Heart of Glass" \
 url="http://www.blondie.net/" \
 additional_keywords="debra harry"

STORE command

Content-based addressing

6

Keywords (Cont...)

 Computer Communications - CSCI 551

Copyright © William C. Cheng

mini file system

directory and files

think of files as UNIX inodes1)

directory contains description (metadata) of files

no need for subdirectories

2)

every node can have its own implementation

Caching is a local behavior

7

Searching

 Computer Communications - CSCI 551

Copyright © William C. Cheng

at commandline, think google.com but slightly different

Searching

AND searches only

e.g., search keywords="glass heart of" will only match

a file with metadata containing all 3 words

case-insensitive

example of responses

 [1] FileID=02adefc1dfc97a082fa18a5ef1e8c487259b7fb4
 FileName=foo
 FileSize=123
 SHA1=b83a758fecbefcd3ea547fbf0f9a97eba0ea984c
 Nonce=01b7a1bd6f169dde22518a865ab2f44c70fcab82
 Keywords=key1 key2 key3
 [2] FileID=45929c03a7c84687a73543cc348484edc3829496
 FileName=bar
 FileSize=4567
 SHA1=6b6c5636c484d47599d20191c3023b8a29b2fe11
 Nonce=fe1834fdf8cd7356ca11e0c77ac38d387e228f94
 Keywords=key4 key5
 [3] ...

8

Searching (Cont...)

 Computer Communications - CSCI 551

Copyright © William C. Cheng

e.g., get 2 [<extfile>]

GET (i.e., retrieving)

so that only one node will respond

flood a GET request with a FileID in the message

to increase performance (as the expense of extra storeage)

Opportunistic caching

for nodes that did not initiate a GET request, cache the file

with CacheProb

if CacheProb is 0.3, you should cache 30% of the time

call srand48() during initialization

call drand48(), if returned value < CacheProb,

cache the file

you can create a FileID when you create a SEARCH

response message

keep FileID in memory only

When a node goes down, you need to externalize these index

structures so that when you restart, it can recover the index

structures quickly

kwrd_index maps a bit-vector to a list of file references

name_index maps a filename to a list of file references

sha1_index maps a SHA1 value to a list of file references

You must implement 3 index structures to support 3 types of

searches efficiently

one maps a bit-vector to a list of file references

one maps a filename to a list of file references

one maps a SHA1 value to a list of file references

9

Index Files

 Computer Communications - CSCI 551

Copyright © William C. Cheng

Although the spec says that you need to use BSTs for

filename and SHA1 indices, using a sorted linear list is fine

10

Delete

 Computer Communications - CSCI 551

Copyright © William C. Cheng

only the creator of a file can delete it

Delete a file

FileSpec is:

e.g., delete FileName=foo SHA1=6b6c... Nonce=fe18...

nonce is part of file metadata

on file creation (i.e., STORE), generate a random

password using GetUOID()

this is a one-time password

 FileName=foo
 SHA1=6b6c...
 Nonce=fe18...
 Password=27c3...

verifying one-time password

if SHA1(password) == nonce, delete the file

calculate nonce=SHA1(password)

11

Bit-Vector

 Computer Communications - CSCI 551

Copyright © William C. Cheng

Bit-vector as a simplest form of a Bloom Filter

directory entry contains a bit-vector (long, e.g., 1024 bits)

map all possible words to the bit-vector

for example, use SHA1 mod 1024 to produce a bit index

into the bit-vector

many words can map to the same bit index

take all keywords, compute bit index, set all these bits to

one, store bit-vector in directory entry

for a single-word query, compute bit index of this word

if the corresponding bit in a bit-vector is set, there is

a possible match; in this case, do string compare

if the corresponding bit in a bit-vector is not set, there is

no possibility of a match; try the next directory entry

12

 Computer Communications - CSCI 551

 Copyright © William C. Cheng

Bit-Vector (Cont...)

for a keyword k:

corresponding bit in left bit-vector: SHA1(k) mod n

corresponding bit in right bit-vector: MD5(k) mod n

echo -n "categories" | openssl sha1

2 bit-vectors (n bits on the left and n bits on the right)

n = 512 for our project

concatenated into one 1024 bit string for storage in

File Metadata, hexstring encoded

50b9e78177f37e3c747f67abcc8af36a44f218f5

Ex: single keyword, k = "categories"

SHA1(k) mod n (same as taking the right-most 9 bits)

0x0f5 (= 245 in decimal)

echo -n "categories" | openssl md5

b0b5ccb4a195a07fd3eed14affb8695f

MD5(k) mod n = 0x15f (= 351 in decimal)

13

 Computer Communications - CSCI 551

 Copyright © William C. Cheng

Bit-Vector (Cont...)

need to turn on bits 757 (=245+512) and 351

Ex: single keyword, k = "categories" (cont...)

00 \
00 \
00 \
00 \
00 \
0000000000000001

bit index is from the right

therefore, to turn bit 0 on:

351 = (87*4+3)

shift the above bit pattern left 351 bits

757 = (189*4+1)

shift the above bit pattern left 757 bits

00 \
000000000000000000200000000000000000000000000000 \
00 \
000000000000000000000000800000000000000000000000 \
00 \
0000000000000000

14

 Computer Communications - CSCI 551

 Copyright © William C. Cheng

Node Directory Structure

kwrd_index is indexed by bit-vector

 $(HomeDir)
 +- init_neighbor_list
 +- kwrd_index
 +- name_index
 +- sha1_index
 +- ... (other files you want to keep)
 +- files
 +- 1.data
 +- 1.meta
 +- 2.data
 +- 2.meta
 +- ...

you can have additional files

e.g., 1.pass to store the one-time password that

corresponds to 1.data, 1.extra to store extra information

(can’t think of anything at this point)

name_index can be a BST, indexed by file name

sha1_index can be a BST, indexed by SHA1 hash of files

e.g., "blondie1.mp3" → 5 (if 5.data stores blondie1.mp3

and 5.meta stores the corresponding metadata)

15

 Computer Communications - CSCI 551

 Copyright © William C. Cheng

Probabilistic Flooding for STORE Messages

for each neighbor, use NeighborStoreProb to decide if a

STORE message should be sent or forwarded

STORE message is flooded probabilistically

when a node receives a STORE message, use StoreProb to

decide if the file should be cached

call drand48(), if returned value < NeighborStoreProb,

send/forward the STORE message

call drand48(), if returned value < StoreProb, cache

the file

if the node decides not to cache the file, it should not

continue to flood

16

 Computer Communications - CSCI 551

 Copyright © William C. Cheng

Permanent vs. Cache Storage and LRU

cache storage space is subject to LRU

Two types of storage areas:

permanent storage space is not subject to LRU

size is up to filesystem limit (or your disk quota)

size is specified by the CacheSize key

if a node initiates a GET or a STORE, the file goes into its

permanent space

if a file suppose to go into permanent space and there is

not enough space, do not keep the file

Need to keep track of which file is in cache and which file

is in permanent storage

if a file is referenced in LRU, then it’s in the cache

17

 Computer Communications - CSCI 551

 Copyright © William C. Cheng

Cache Storage and LRU

Cache storage

if a file is not suppose to go into permanent space, it should

be stored in the cache space

cache storage space is subject to LRU

a file is considered accessed if it is selected in a

SEARCH response

LRU

if (filesize > CacheSize), do not store it

when a node goes down, you need to externalize the LRU

list so that when you restart, it can recover the LRU

list

move file reference to the end of the list

while (filesize + current usage > CacheSize)

start deleting files from the head of the LRU list (this

would decrease current usage)

