CS551 Integrated and Differentiated Services

Bill Cheng

http://merlot.usc.edu/cs551-f12

🛰 Copyright © William C. Cheng

What's Next: Integrated Services

Integrated services

resource reservations (Internet: RSVP)

guaranteed or probabilistic bandwidth/delay

Pros:

good match for real-time traffic (e.g., VOIP)

prefect for VPNs (ISPs can sell "virtual pipes")

make the most use out of your bandwidth

Cons:

too much state for backbone routers

difficult policy issues between AS's?

 \Rightarrow not widely deployed

Copyright © William C. Cheng

What's Next: Differentiated Services

Differentiated services

assumes some overprovisioning

- very simple service model
 - best-effort and preferred (better-than-best-effort)
 - or in and out (best-effort and less-than-best-effort)

Pros:

- easy to implement and fast (no per-flow state)
- ISPs can charge extra for preferred

Cons:

no guarantees

CS551 Fundamental Design Issues [Shenker95a]

Bill Cheng

http://merlot.usc.edu/cs551-f12

Copyright © William C. Cheng

Key Ideas

- Do we need to extend the Internet service model (currently best effort)?
 - Reservations, admission control, etc, or
 - Overprovision and keep best effort
- How do we even study this question?
- Simple model, very high level view
 - Asks fundamental questions
 - Helps guide the thinking for a very hard question

Model: Utility and Efficacy

- Does the network make users happy?
- > Define U(j) be the utility delivered to the jth user
 - U(j) maps the network's performance to the user's level of happiness
 - For example, higher bandwidth delivered to a video application (up to a point) makes the user happier
 - Similarly, lower delay delivered to application makes user happier
 - Goal of network is to maximize
 - ... the sum of all U(j)s (the efficacy, denoted by V)

More Bandwidth or New Service Model?

- In a best-effort network, can increase bandwidth to increase efficacy
- Or, for the same bandwidth, introduce new services matched to application needs
 - ... and increase efficacy that way
 - Key question: what's the relative cost of adding bandwidth and adding new services
 - Shenker: always better to add new services
 - makes better use of available bandwidth
 - but cost of adding new services hard to estimate

Other Considerations

- Do separate networks for different applications provide higher efficacy?
 - No. A single network can always use leftover bandwidth to increase efficacy
- Note: increasing efficacy does not mean increasing everyone's utility
 - Service models must map application requirements
 - Otherwise, none of these arguments holds

Implicit vs. Explicit Service Request

- Should applications explicitly request service, or should the network determine service to deliver?
- Implicit doable if number of services is small and well known and stable (e.g., port number)
 - Need to embed application knowledge inside the network (BAD!)
 - Explicit supports larger variety of services but incentives needed so all do not request highest service
 - Applications must know what they want!
 - Pricing, accounting and billing: these are hard
 - Stable service model needed so apps know what to request
 - Major coordination effort (imagine changing IP or Ethernet..)

🛰 Copyright © William C. Cheng

Admission Control?

- Overload: a network is overloaded if by removing a flow would increase V even though there are fewer flows
- If V(n) does not continue to increase as n goes to infinity, then we either need admission control or over-provisioning
 - Best Effort never overloads (or does it?)

Over-provisioning

- Works for "normal users" because need to overprovision by a small amount
- Over-provisioning for "leading edge" users is hard because these consume several orders of magnitude more than normal users
- Internet will be provisioned to rarely block normal users, but will block leading edge users frequently

Summary

Internet should extend its service model

- Service should be explicitly requested by applications
- Service model should incorporate admission control
- Abstract formulation of maximizing efficacy
- Digital convergency: Integrated Services
 - Data network
- Telephone network
- Cable network
 - \Rightarrow under one IP