CS551 End-to-End Internet Packet Dynamics [Paxson99b]

Bill Cheng

http://merlot.usc.edu/cs551-f12

End-to-end Packet Dynamics

How do you measure Internet performance?

- Why do people want to know?
- Are ISPs willing to tell you?

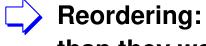
Key Ideas

- **Measure Internet traffic**
- active measurements
- N² paths
- lots of details out of TCP
- **Evaluate dynamics**
- pathologies (out-of-order, duplication, corruption)
- bandwidth
- loss
- delay

Methodology

Previous studies

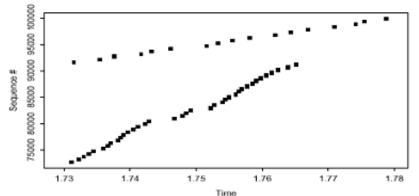
- Focused on a small number of paths
- Used unrealistic traffic (pings etc.)



Paxson's study

- Examined nearly 1000 paths
- Used TCP traffic
 - routers designed to handle TCP as common case
 - congestion-adaptive (both good and bad)
- Was extraordinarily careful
 - used statistically valid sampling to reduce bias
 - looked at the wire to get most confidence
 - adjusted for TCP implementation idiosyncrasies

Pathologies: Reordering



Reordering: packets arrive at receiver in a different order than they were sent

Evidence:

- Significant (non-trivial) occurrence (10-30% connections)
- Strongly-site dependent
- Most egregious instances correlated with route flutter
 - Different packets sent along different routes

Other curious effects

Router forwarding lulls (i.e., stops forwarding as if it has gone to sleep)

Impact of Reordering

- On TCP fast retransmit and recovery
- Which assume packet loss upon receiving dup-ACKs
- But packets may actually have been reordered

- Can we avoid this by:
- Waiting before sending ACK
 - yes, about 20ms waits would have detected most reordering events
- Reducing the dup-ACK threshold
 - o possibly, to 2
- But, these require server and client side change
 - bottom line: current techniques work

Other Pathologies

- Packet duplication
 - Link layer retransmissions
 - Happens, but very infrequently
- Packet corruption
 - About 1 in 5000 (2x10⁻⁴)
 - Is TCP 16-bit checksum enough to protect against this?
 - maybe not
- Found one out of 300K ACKs corrupted, so maybe not

Bottleneck Bandwidth Estimation

How do you compute the bottleneck path bandwidth?

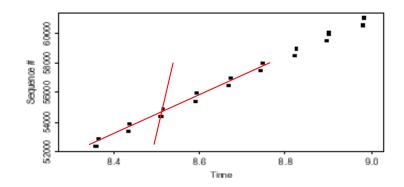
- Bottleneck BW: max possible rate
- Available bandwidth: reasonable share

Packet pair

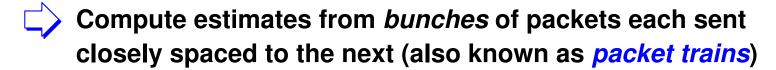
- Send two packets, each size S, closely spaced
- At bottleneck, the packets are separated by a time T
- Bottleneck bandwidth Qb = S/T

Where to measure? Sender (RTT) or receiver (OTT)?

- If inference done at sender, can be error-prone because of
 - ACK compression
 - bandwidth asymmetry, which causes noise in reverse path


Packet Pair Problems and Fixes

Route changes (fix: measure several, take mode)


Out of order delivery (fix: filter out)

Multi-channel links, route spraying (fix: measure for multiple packets)

Fix? Packet-bunch Modes

- Get modes from the distribution of estimates
 - If two modes widely separated in trace-> route change
 - If two modes for different bunch sizes-> multi-channel links
 - Bunches also eliminate clock granularity problems

Packet Loss

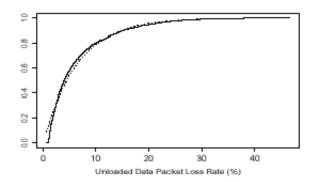
- Fairly high rates (3% or 5%)
 - much higher on some links, ex. US to Europe
- But many connections are loss-free (30- 66%)

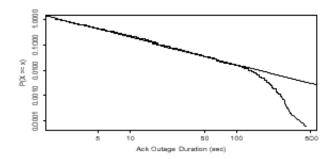
Is Loss Predictive?

- short-time-scale: packet a to b (stream)
- define queued and unqueued pkts
 - queued := packet i queued behind i-1 at bottleneck link
 - else unqueued (sufficent allows traffic spacing that no selfqueueing)
- queued packets have much higher loss rates

- long-time scale: hours or days
- zero/non-zero is predictive (data not in paper)
- actual loss rate is not predictive
- engineering

Loss Patterns




- **Data vs ACK loss**
- Data loss across connections well-modeled by exponential
- Not so for ACKs

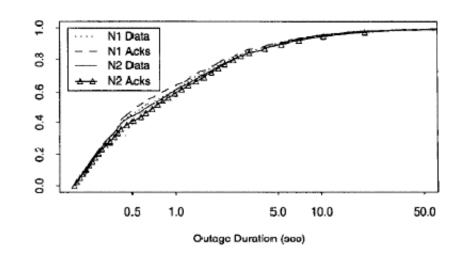
Bursts

- Loss are not independent
- Burst sizes are heavy-tailed

Burst Loss

Conditional loss definition

- P[pkt i lost | pkt i-1 was lost]
- conditinal loss rates are much higher



Why

- drop-tail routers
- - **Implications**
 - losses are not i.i.d

TABLE II Unconditional and Conditional Loss Rates

Type of loss	P_l^u		P_l^c	
	\mathcal{N}_1	\mathcal{N}_2	\mathcal{N}_1	\mathcal{N}_2
Queued data pkt	2.8%	4.5%	49%	50%
Unqueued data pkt	3.3%	5.3%	20%	25%
Ack	3.2%	4.3%	25%	31%

Overall Loss Characteristics

- ACK loss is the correct determinant of network conditions
 - In measuring, must be careful to account for tcpdump losses
- Doubling of average loss in one year
- Loss rates don't have predictive power
 - But whether a connection suffers loss or not can be used for prediction

Existence of

- Dual network states (quiescent vs. busy)
- Diurnal variations
- Geographical diversity in loss patterns
- No typical loss rate

- Correct RTO implementation
- SACK

Delays

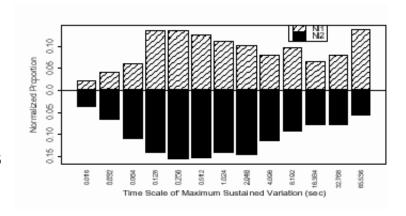
ACK and data timing compression should not happen

ACK compression

- A flight of ACKs queued behind cross traffic
- Happens quite infrequently
 - although most connections experienced one
 - durations are small and number of such events is small
- Packet pair techniques can account for this by rejecting outliers

Data timing compression

- Much more infrequent than ACK compression
- Possibly due to specific routers


Delays

- **Queueing time scales**
- Measured by variations in one-way transit times
- Show wide variability, so we cannot design for a particular regime

- Available bandwidth
- Approximated by variations in delay experienced due to own loading
- Again, shows wide variability
- Most between 0.1 1 sec

Questions?

- Do you think this study is valid today?
- What has happened since 1995?
- Dialup->broadband
- Better connectivity
- Higher backbone speeds

18