CS551 Wireless and Mobile Networking

Bill Cheng

http://merlot.usc.edu/cs551-f12

🛰 Copyright © William C. Cheng

How Is Wireless & Mobile Different From Traditional Networking?

• Wireless

🛥 cellular vs. ad hoc

transmission media is air

- O interference from other radios and obsticals
 ⇒ much less reliable
 - \Rightarrow much less reliable
- higher error rates
- mitigated by physical level work (coding)
- not everyone can hear each other
- slower speed than traditional (limited spectrum)
- security
 - o network may not trust users
 - users may not trust network

How Is Wireless & Mobile Different From Traditional Networking? (Cont...)

- Mobile
 - location change \Rightarrow routing needs to change
 - what basestation are you talking to
 - limited energy (battery)
 - scaling may not be as important
 - scaling in ad hoc network is open research
 - 🛥 security, again
 - o network may not trust users
 - users may not trust network

Dimensions of Wireless/Mobile

- mobility
 - one-hop to base-station vs. ad hoc/multi-hop
- wireless
 - 🗕 fixed vs. mobile
- protocols
 - IP vs. cell phone (3G)
 vs. protocols for sensor
 networks
- constraints
 - 🗕 energy
 - 🛥 radio range
 - 🛥 antenna directionality

- do you trust others to forward your data
- to overhear your packets
- 🖒 app-level issues
 - even if you have connectivity, what can you do?
 - Ex: it may be easier to share files with floppies
 - often e-mail must go through a central

server

🛰 Copyright © William C. Cheng

Approach For This Class

- Lots of work in mobile/wireless
- Look at small sample
 - link-layer: MACAW
 - routing: Mobile IP and DSR
 - transport-layer: SNOOP
 - sensor network: Direct Diffusion
 - applications (CSci555)

CS551 Mobile IP [Johnson96b]

Bill Cheng

http://merlot.usc.edu/cs551-f12

🛏 Copyright © William C. Cheng

Copyright © William C. Cheng

Possible Approaches

- > Why not just announce a route to your host?
 - doesn't scale to millions of hosts
 - breaks hierarchical addressing!
- > Why not re-address your host?
 - then people can't find out
 - but this is what 95% of people do today, because they only run clients, not servers
 - Why not separate naming and addressing?
 - too many protocols use IP addresses instead of hostnames, especially for open connections

The IETF Mobile IP Approach

- A location registry
 - keeps track of where you are
 - unnels packets to you
- Pros:
 - good scalability (many users)
 - incremental deployment easy
- Cons:
 - triangle routing through home
 - must be careful about security
 - is it really necessary? (consider end-to-end argument)

Other Mobile IP Issues

Route optimality

- resulting paths are not optimal, they all go through the HA
- can be improved with route optimization
 - smart senders keep cache of FA & MH^{local-temp}
 - one more thing to keep updated

Smooth handoffs

don't want to drop pkts when changing FAs

Security issues

- authentication
 - FA may make false claim that MH is in its network
 - don't want others to claim to be MH
- confidentiality
 - FA may be listening and recording
- **–** FA may modify messages

Copyright © William C. Cheng