CS551 Single Source Multicast [Holbrook99a]

Bill Cheng

http://merlot.usc.edu/cs551-f12

🛰 Copyright © William C. Cheng

Key Ideas

> Use channels: a single sender, many subscribes

- makes multicast tree easier to configure

easier to tell who can send

Add mechanism to let you count

Easier to think about billing

Goal: define a simpler model

Multicast Problems

- Need billing mechanism
 - need to know number of subscribers
- Need access control
 - need to limit who can send and subscribe
 - ISPs concerned about multicast
 - IPv4 multicast addresses too limited
 - Current protocols too complex

Changing the Service Model

- > What we've discussed so far
 - Any source multicast
- > Problems:
 - How do you charge users?
 - How do you manage the bandwidth allocation?
 - How can you ensure secure communication?
 - All of these are still research topics
 - Other problems
 - Multicast state aggregation
 - Is there a simpler alternative we can deploy now?

Single Source Multicast

- > ISP acceptance will be higher
 - If the multicast service model restricted the senders
 - If there was a way to figure out how many receivers there were
- > They can then have a viable billing and accounting model
- Simplest such scheme
 - Single-source per multicast group
- Receivers can still join and leave at will

Single Source Multicast (Cont...)

All addresses are source specific

- → 2²⁴ channels (232.*.*.* reserved by IANA) per source
 - \bigcirc 2³² sources
- a group in SSM is denoted by (S,G)
 - S is the source's address
 - G is the group identifier
- address allocation -- no problem (unlike for any-source multicast, G doesn't have to be globally unique)

Access control

- only source can send
- channels optionally protected by "key" (really just a secret)
- sub-cast support (encapsulate packet to any router on the tree, if you know who they are)

 Best-effort couting service

 yright © William C. Cheng

SSM Details

- Receiver specifies that it wants to join source S on group G
 - But this is already being designed in IGMP v3!
- Routers send source-specific joins towards S
 - But PIM-SM already does this!
- Only source S allowed to send traffic to group G
 - Routers silently drop other traffic if there is no state
- Note that we don't need a special inter-domain multicast routing protocol!

Express Components

- **ECMP: Express Count Management Protocol**
 - like IGMP, but also adds *count* support
 - counts used to determine receivers or for other things like voting
 - not clear how general this is
 - **Session relays**
 - service at source that can relay data on to tree (similar to PIM tunneling)

