7 Computer Communications - CSCI 551 N

CS551
Distributed Hash Tables

Structured Systems

Bill Cheng
http://merlot.usc.edu/cs551-f12

(-)
Y
1 ())

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

CS551
Chord

[Stoica01a]

Bill Cheng
http://merlot.usc.edu/cs551-f12

)
o

2 J

\. Copyright © William C. Cheng J/

Computer Communications - CSCI 551 N

Chord

_) A structured peer-to-peer system
—) Map key to value

_, Emphasis on good algorithmic performance
= uses consistent hashing
= O(log N) route storage, O(log N) lookup cost, O(IogzN)

cost to join/leave
= VsS. FreeNet w/emphasis on anonymity

ﬁ> Easy if static, but must deal with node arrivals and departures

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Compare Search in Several Peer-to-Peer
Systems

) Napster: central search engine

ﬁ} Freenet: search towards keys, but nho guarantees

ﬁ> Chord:

= map keys to linear search space

= keep pointers (fingers) into exponential places around
space

= probabilistic (depends on hashing)

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Hashing Nodes and Data

—) Nodes hash IP addresses to key
Le] space
ESUCCESSOR(1)=1 = because this hashing is random,
can expect nodes to be evenly
PN distributed in key space

SUCCESSOR(6)=0

) Store data in the successor of the
data item’s key

_) Property:
= |f each node maintains

successor,
= ... can find any data item

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Hashing Nodes and Data

—) Nodes hash IP addresses to key
Le] space
ESUCCESSOR(1)=1 = because this hashing is random,
can expect nodes to be evenly
distributed in key space

SUCCESSOR(2)=3

SUCCESSOR(6)=0

) Store data in the successor of the
data item’s key

_) Property:
= [f each node maintains
successotr,
= ... can find any data item
> Nodes have a pointer
= but O(n) performance o
(n)p s

\. Copyright © William C. Cheng J/

7 Computer Communications - CSCI 551 N

Improving Search Performance with
Finger Tables

) Finger tables enable logarithmic lookup
= i-th finger of hode x is successor of x+2"
= at each step, we halve the remaining distance (in key

space) to the target

1 1 2 4 8
AA=A=A=A=A=/

A\
1 2 4
0 X+2 X+2 X+23 X+2

X+2

x

)
>d
)
.>*
Jm
\

OQO®® X C
»
+
N
o
»
+
N—l
>
+
N
N
»
+
N
\
C
x
N []
F=Y

ﬁ> Challenge: maintaining finger tables! o@.‘a
\< Copyright © William C. Cheng S>)

Computer Communications - CSCI 551 N

Improving Search Performance with
Finger Tables (Cont...)

) Finger tables enable logarithmic lookup
= i-th finger of hode x is successor of x+2"
= at each step, we halve the remaining distance (in key

space) to the target)
Q EXx: look for key y

x+21 56

x+21%7

x+21 58

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Improving Search Performance with
Finger Tables (Cont...)

) Finger tables enable logarithmic lookup
= i-th finger of hode x is successor of x+2"
= at each step, we halve the remaining distance (in key
space) to the target
Q EXx: look for key y o xi2'%
& case 1:y s just beyond X+2
x+2159
¢ forward to Lup158
successor(x+2")

& way more than half
the distance to y

157

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Improving Search Performance with
Finger Tables (Cont...)

) Finger tables enable logarithmic lookup
= i-th finger of hode x is successor of x+2"
= at each step, we halve the remaining distance (in key
space) to the target

Q EXx: look for key y o— x+2'%
& case 2:y is justinside <
159
X+2
& forward to 42158

successor(x+2")

& a little over half
the distance to y

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Improving Search Performance with
Finger Tables (Cont...)

) Finger tables enable logarithmic lookup
= i-th finger of hode x is successor of x+2"
= at each step, we halve the remaining distance (in key
space) to the target
Q EXx: look for key y o xi2'%
& case 3:y is just beyond X+2
x+2158
¢ forward to Lup158
successor(x+2") y
& way more than half
the distance to y

& and so on...

157

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Finger Tables Example

finger table keys
))] start| int. |succ. E
_ . .] i-th finger of node x is 1 (1,2 1
finger[3].interval=[finger[3].start,finger[3].1) i-1 2 2’4 3
successor of x+2 [2,4)
4 1[40 O
O
® finger table keys
|start| int. |succ.
finger[1].start=2 2 [[2,3)] 3
3 |[35) 3
5 [[5,1)] O
finger[1].interval=
[finger[1].start,
finger[2].start)
finger[3].start=5 finger[2].start=3 o
finger table keys
finger[2].interval=[finger[2].start,finger[3].start) start] int. |succ. |Z|
4 ([45)| O
5 [[5,7)] O
7 [[7,3)] O

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N
Node Joins
G> Must keep successors and finger table current

ﬁ> Use successors for correctness
= can always fall back on them to find a key

ﬁ> Use finger table for performance
= must update it, but can tolerate temporary errors

ﬁ> Keep successor and predecessor so we can update our
neighbors

ﬁ} Key observation: can find successors and fingers by doing
a lookup on the existing Chord ring!

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Finding Predecessor and Successor

node.find_successor(key)
n = find_predecessor(key);
return n.successor;

node.find_predecessor(key)
n = node;
while (key ¢ (n,n.successor])
n = n.closest_preceding finger(key);
return n;

node.closest_preceding_finger(key)
for (i=m;i> 0;i--)
if (finger[i].node € (node,key))
return finger[i].node;
return node; &—c

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Join Example

before node 6 joins before node 6 joins
finger table keys i] finger table keys
- finger table keys -
start[int. [succ)| [6] - start[int. Jsuce)] [|
1 [n2l 1 start| int. |succ. |:| 1 2] 1
2 |[2,4) 3 2 |[2,4)] 3
4 |[4,0)] O 4 |[4,0)
O
® finger table keys finger table keys
start| int. |succ. start| int. |succ.
2 [[23)] 3 2 ([23)] 3
3 |I8,5] 3 3 |[85] 3
5 [[51)] O 5 [[5,1)
@) ! -
finger table keys finger table keys
start| int. |succ. |Z| start| int. {succ. |Z|
4 |[45)] O 4 |[4,5)
5 |[57)] 0 5 |[5,7)
7 |[73)] O 7 |[7,3)| O

= when new node enters, it establishes its successor and
predecessor and then builds its finger table, and moves
()

any keys it now "owns" oY
15 J

\. Copyright © William C. Cheng

Computer Communications - CSCI 551 N

Robusthess

G> Stabilization algorithm to confirm ring is correct

= every 30s, ask successor for its predecessor
Q fix your own successor based on this
Q successor fixes its predecessor if necessary

= also, pick and verify a random finger table entry
Q rebuild finger table entries this way
Q important observation: finger tables can be incorrect

for some time (between network sizes of N and 2N)

) Dealing with unexpected failures:
= keep successor list of r successors
= cah use these to replicate data

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N
Applications
block ") _block __H(B1) data block
public key root-block _,—> _____ >] B1
"--ZZ|no | D: F: File Systems
E : : data block
“signature HB2)| B2

Multicast and Anycast (using rendezvous)

2 2

recelver (R) sender (S) (jd,data

2

2

receiver (R)

R,data
(id,R)

sender (S)

\. Copyright © William C. Cheng

7 Computer Communications - CSCI 551 N

Chord Performance

) Performance dominated by lookup cost
= how long does it take to get to the node that stores a key?

ﬁ} Chord promises few O(logN) hops on the overlay
= but, on the physical network, this can be quite far
Q this is often the problem with overlay networks

— T . _— —
O O O O | O *
0 32 64 96 120 128 255

\. Copyright © William C. Cheng

