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Chord

uses consistent hashing

A structured peer-to-peer system

Map key to value

Emphasis on good algorithmic performance

O(log N) route storage, O(log N) lookup cost, O(log
2
N)

cost to join/leave

vs. FreeNet w/emphasis on anonymity

Easy if static, but must deal with node arrivals and departures
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Compare Search in Several Peer-to-Peer
Systems

map keys to linear search space

Napster: central search engine

Freenet: search towards keys, but no guarantees

Chord:

keep pointers (fingers) into exponential places around

space

probabilistic (depends on hashing)
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Hashing Nodes and Data

because this hashing is random,

can expect nodes to be evenly

distributed in key space

Nodes hash IP addresses to key

space

Store data in the successor of the

data item’s key

Property:

If each node maintains

successor,

... can find any data item

SUCCESSOR(6)=0
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Hashing Nodes and Data

because this hashing is random,

can expect nodes to be evenly

distributed in key space

Nodes hash IP addresses to key

space

Store data in the successor of the

data item’s key

Property:

If each node maintains
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... can find any data item
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Nodes have a successor pointer

but O(n) performance



at each step, we halve the remaining distance (in key

space) to the target

Challenge: maintaining finger tables!
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Improving Search Performance with
Finger Tables

i-th finger of node x is successor of x+2
i-1

Finger tables enable logarithmic lookup
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at each step, we halve the remaining distance (in key

space) to the target
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Improving Search Performance with
Finger Tables (Cont...)

i-th finger of node x is successor of x+2
i-1

Finger tables enable logarithmic lookup

x

x+2
159

x+2
158

x+2
157

x+2
156

Ex: look for key y



at each step, we halve the remaining distance (in key

space) to the target
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Improving Search Performance with
Finger Tables (Cont...)

i-th finger of node x is successor of x+2
i-1

Finger tables enable logarithmic lookup

x

x+2
159

x+2
158

x+2
157

x+2
156

Ex: look for key y

y

case 1: y is just beyond

x+2
159

forward to

successor(x+2
159

)

way more than half
the distance to y



case 2: y is just inside

x+2
159

forward to

successor(x+2
158

)

a little over half
the distance to y

at each step, we halve the remaining distance (in key

space) to the target
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Improving Search Performance with
Finger Tables (Cont...)

i-th finger of node x is successor of x+2
i-1

Finger tables enable logarithmic lookup

x

x+2
159

x+2
158

x+2
157

x+2
156

Ex: look for key y

y



case 3: y is just beyond

x+2
158

forward to

successor(x+2
158

)

way more than half
the distance to y

at each step, we halve the remaining distance (in key

space) to the target
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Improving Search Performance with
Finger Tables (Cont...)

i-th finger of node x is successor of x+2
i-1

Finger tables enable logarithmic lookup

x

x+2
159

x+2
158

x+2
157

x+2
156

Ex: look for key y

y

and so on...
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int. succ. 2

keys

i-th finger of node x is

successor of x+2
i-1
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Finger Tables Example

7 1

2

3

4

5

6

0

finger[1].start=2

finger[1].interval=
[finger[1].start,
finger[2].start)

finger[2].start=3
finger[3].start=5

finger[2].interval=[finger[2].start,finger[3].start)

finger[3].interval=[finger[3].start,finger[3].1)
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Node Joins

can always fall back on them to find a key

Must keep successors and finger table current

Use successors for correctness

must update it, but can tolerate temporary errors

Use finger table for performance

Keep successor and predecessor so we can update our

neighbors

Key observation: can find successors and fingers by doing

a lookup on the existing Chord ring!



node.find_successor(key)

        n = find_predecessor(key);

        return n.successor;
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Finding Predecessor and Successor

node.find_predecessor(key)

        n = node;

        while (key ∉ (n,n.successor])

                n = n.closest_preceding_finger(key);

        return n;

node.closest_preceding_finger(key)

        for (i=m; i > 0; i--)

                if (finger[i].node ∈ (node,key))

                        return finger[i].node;

        return node;
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Join Example

when new node enters, it establishes its successor and

predecessor and then builds its finger table, and moves

any keys it now "owns"
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Robustness

every 30s, ask successor for its predecessor

fix your own successor based on this

Stabilization algorithm to confirm ring is correct

successor fixes its predecessor if necessary

also, pick and verify a random finger table entry

rebuild finger table entries this way

important observation: finger tables can be incorrect

for some time (between network sizes of N and 2N)

keep successor list of r successors

Dealing with unexpected failures:

can use these to replicate data



public key
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Applications

signature

root-block

dictionary
block

D

inode
block

F

data block

B1

data block

B2

H(D)

H(F)
H(B1)

H(B2)

File Systems

Multicast and Anycast (using rendezvous)

receiver (R)sender (S)

(id,R)

receiver (R)sender (S)

(id,R)

id,data
R,data
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Chord Performance

how long does it take to get to the node that stores a key?

Performance dominated by lookup cost

but, on the physical network, this can be quite far

Chord promises few O(logN) hops on the overlay

this is often the problem with overlay networks
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