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Abstract. MD5 is one of the most widely used cryptographic hash func-
tions nowadays. It was designed in 1992 as an improvement of MD4, and
its security was widely studied since then by several authors. The best
known result so far was a semi free-start collision, in which the initial
value of the hash function is replaced by a non-standard value, which is
the result of the attack. In this paper we present a new powerful attack
on MD5 which allows us to find collisions efficiently. We used this attack
to find collisions of MD5 in about 15 minutes up to an hour computation
time. The attack is a differential attack, which unlike most differential
attacks, does not use the exclusive-or as a measure of difference, but
instead uses modular integer subtraction as the measure. We call this
kind of differential a modular differential. An application of this attack
to MD4 can find a collision in less than a fraction of a second. This attack
is also applicable to other hash functions, such as RIPEMD and HAVAL.

1 Introduction

People know that digital signatures are very important in information security.
The security of digital signatures depends on the cryptographic strength of the
underlying hash functions. Hash functions also have many other applications
in cryptography such as data integrity, group signature, e-cash and many other
cryptographic protocols. The use of hash functions in these applications not only
ensure the security, but also greatly improve the efficiency. Nowadays, there are
two widely used hash functions – MD5 [18] and SHA-1 [12].

MD5 is a hash function designed by Ron Rivest as a strengthened version of
MD4 [17]. Since its publication, some weaknesses has been found. In 1993, B.
den Boer and A. Bosselaers [3] found a kind of pseudo-collision for MD5 which
consists of the same message with two different sets of initial values. This attack
discloses the weak avalanche in the most significant bit for all the chaining vari-
ables in MD5. In the rump session of Eurocrypt’96, H. Dobbertin [8] presented
a semi free-start collision which consists of two different 512-bit messages with
a chosen initial value IV ′

0 .

a0 = 0x12ac2375, b0 = 0x3b341042, c0 = 0x5f62b97c, d0 = 0x4ba763ed

A general description of this attack was published in [9].
Although H. Dobbertin cannot provide a real collision of MD5, his attack

reveals the weak avalanche for the full MD5. This provides a possibility to find
a special differential with one iteration.



In this paper we present a new powerful attack that can efficiently find a col-
lision of MD5. From H. Dobbertin’s attack, we were motivated to study whether
it is possible to find a pair of messages, each consists of two blocks, that pro-
duce collisions after the second block. More specifically, we want to find a pair
(M0,M1) and (M ′

0,M
′
1) such that

(a, b, c, d) = MD5(a0, b0, c0, d0,M0),
(a′, b′, c′, d′) = MD5(a0, b0, c0, d0,M

′
0),

MD5(a, b, c, d,M1) = MD5(a′, b′, c′, d′,M ′
1),

where a0, b0, c0, d0 are the initial values for MD5. We show that such collisions
of MD5 can be found efficiently, where finding the first blocks (M0,M

′
0) takes

about 239 MD5 operations, and finding the second blocks (M1,M
′
1) takes about

232 MD5 operations. The application of this attack on IBM P690 takes about
an hour to find M0 and M0

′, where in the fastest cases it takes only 15 minutes.
Then, it takes only between 15 seconds to 5 minutes to find the second blocks
M1 and M1

′. Two such collisions of MD5 were made public in the Crypto’04
rump session [19].

This attack is applicable to many other hash functions as well, including
MD4, HAVAL-128 and RIPEMD ([17], [20], [15]). In the case of MD4, the attack
can find a collision within less than a second, and can also find second pre-images
for many messages.

In Crypto’04 Eli Biham and Rafi Chen presented a near-collision attack on
SHA-0 [2], which follows the lines of the technique of [4]. In the rump session they
described their new (and improved) results on SHA-0 and SHA-1 (including a
multi-block technique and collisions of reduced SHA-1). Then, A.J̃oux presented
a 4-block full collision of SHA-0 [14], which is a further improvement of these
results. Both these works were made independently of this paper.

This paper is organized as follows: In Section 2 we briefly describe MD5.
Then in Section 3 we give the main ideas of our attack, and in Section 4 we
give a detailed description of the attack. Finally, in Section 5 we summarize the
paper, and discuss the applicability of this attack to other hash functions.

2 Description of MD5

In order to conveniently describe the general structure of MD5, we first recall
the iteration process for hash functions.

Generally a hash function is iterated by a compression function X = f(Z)
which compresses l-bit message block Z to s-bit hash value X where l > s. For
MD5, l = 512, and s = 128. The iterating method is usually called the Merkle-
Damgard meta-method (see [6], [16]). For a padded message M with multiples
of l-bit length, the iterating process is as follows:

Hi+1 = f(Hi,Mi), 0 ≤ i ≤ t − 1.

Here M = (M0,M2, · · · ,Mt−1), and H0 = IV0 is the initial value for the hash
function.



In the above iterating process, we omit the padding method because it has
no influence on our attack.

The following is to describe the compression function for MD5. For each
512-bit block Mi of the padded message M , divide Mi into 32-bit words, Mi =
(m0,m1, ....,m15). The compression algorithm for Mi has four rounds, and each
round has 16 operations. Four successive step operations are as follows:

a = b + ((a + φi(b, c, d) + wi + ti) ≪ si),
d = a + ((d + φi+1(a, b, c) + wi+1 + ti+1) ≪ si+1),
c = d + ((c + φi+2(d, a, b) + wi+2 + ti+2) ≪ si+2),
b = c + ((b + φi+3(c, d, a) + wi+3 + ti+3) ≪ si+3),

where the operation + means ADD modulo 232. ti+j and si+j (j = 0, 1, 2, 3)
are step-dependent constants. wi+j is a message word. ≪ si+j is circularly left-
shift by si+j bit positions. The details of the message order and shift positions
can be seen in Table 3.

Each round employs one nonlinear round function, which is given below.

Φi(X,Y,Z) = (X ∧ Y ) ∨ (¬X ∧ Z), 0 ≤ i ≤ 15,
Φi(X,Y,Z) = (X ∧ Z) ∨ (Y ∧ ¬Z), 16 ≤ i ≤ 31,
Φi(X,Y,Z) = X ⊕ Y ⊕ Z, 32 ≤ i ≤ 47,
Φi(X,Y,Z) = Y ⊕ (X ∨ ¬Z), 48 ≤ i ≤ 63,

where X, Y , Z are 32-bit words.
The chaining variables are initialized as:

a = 0x67452301, b = 0xefcdab89, c = 0x98badcfe, d = 0x10325476.

We select a collision differential with two iterations as follows: Let Hi−1 =
(aa, bb, cc, dd) be the chaining values for the previous message block. After four
rounds, the compression value Hi is obtained by wordwise addition of the chain-
ing variables to Hi−1.

3 Differential Attack for Hash Functions

3.1 The Modular Differential and the XOR Differential

The most important analysis method for hash functions is differential attack
which is also one of most important methods for analyzing block ciphers. In
general, the differential attack especially in block ciphers is a kind of XOR dif-
ferential attack which uses exclusive-or as the difference. The differential attack
was introduced by E. Biham and A. Shamir to analyze the security of DES-like
cryptosystems. E. Biham and A. Shamir [1], described that differential crypt-
analysis is a method which analyzes the effect of particular differences in plain
text pairs on the differences of the resultant cipher text pairs.

The differential definition in this paper is a kind of precise differential which
uses the difference in term of integer modular subtraction. A similar definition



about the differential with the integer subtraction as the measure of difference
were described in [5] for differential analysis of RC6.

We also use modular characteristics, which describe for each round with both
the differences in term of integer modular subtraction and the differences in term
of XOR. The combination of both kinds of differences give us more information
than each of them keep by itself. For example, when the modular integer sub-
traction difference is X ′−X = 26 for some value X, the XOR difference X ′⊕X
can have many possibilities, which are

1. One-bit difference in bit 7, i.e., 0x00000040. In this case X ′−X = 26 which
means that bit 7 in X ′ is 1 and bit 7 in X is 0.

2. Two-bit difference, in which a different carry is transferred from bit 7 to
bit 8, i.e., 0x000000C0. In this case X ′ − X = 26, but the carry to bit 8
is different in X and X ′, so X ′

7 is now 0, and X7 = 1, while X ′
8 = 1, and

X8 = 0. (i.e., bits 7 and 8 together in X ′ are 10 in binary, and in X there
are 01 in binary).

3. Three-bit difference, in which a different carry is transferred from bit 7 to bit
8 and then to bit 9, i.e., 0x000001C0. In this case bits 7, 8, and 9 in X ′ are
0, 0, and 1, respectively, and in X they are the complement of these values.

4. Similarly, there can be more carries to further bits, and the binary form of
X ′ is 1000. . . , and of X is 0111. . . .

5. In case the former difference is negative, the XOR differences still look the
same, but the values of X and X ′ are exchanged (i.e., X is of the form
1000. . . , and X ′ of the form 0111. . . ).

In order to explain our attack clearly, we refer to the modular differences in the
differential path (see Table 3) with both kinds of differences together, i.e., the
difference is marked as a positive or a negative integer (modulo 232) and also with
the XOR difference. But then the XOR difference is marked by the list of active
bits with their relative sign, i.e., in the list of bits, the bits whose value in X is
zero are marked without a sign, and the values whose value in X is 1 are marked
with a negative sign. For example, the difference −26, [7, 8, 9, . . . , 22,−23] marks
the integer modular subtraction difference X ′ − X = −26 (with X ′ < X),
with many carries which start from bit 7 up to bit 23. All bits of X from
bit 7 to bit 22 are 0, and bit 23 is 1, while all bits of X ′ from bit 7 to bit
22 are 1, and bit 23 is 0. A more complicated example is −1 − 26 + 223 −
227, [1, 2, 3, 4, 5,−6, 7, 8, 9, 10, 11,−12,−24,−25,−26, 27, 28, 29, 30, 31,−32], where
the integer modular subtraction difference is composed of several (positive and
negative) exponents of 2, and the XOR difference has many difference due to
carries. Note that when the carry arrives to bit 32, a further (dropped) carry
may happen, and then there is no negative sign in bit 32.

It should be noted that the modular differential has been used earlier to
analyze some hash functions ([4], [7], [10]). Compared with these attacks, our
attack has the following advantages:

1. Our attack is to find collisions with two iterations, i. e., each message in the
collision includes two message blocks (1024-bit).



2. Our attack is a precise differential attack in which the characteristics are
more restrictive than used, and that they gives values of bits in addition to
the differences.

3. Our attack gives a set of sufficient conditions which ensure the differential
to occur.

4. Our attack use a message modification technique to greatly improve the
collision probability.

3.2 Differential Attacks on Hash Functions

The difference for two parameters X and X ′ is defined as ∆X = X ′ − X. For
any two messages M and M ′ with l-bit multiples, M = (M0,M1, · · · ,Mk−1),
M = (M0

′,M1
′, · · · ,Mk−1

′), a full differential for a hash function is defined as
follows:

∆H0
(M0,M ′

0)−→ ∆H1
(M1,M ′

1)−→ ∆H2
(M2,M ′

2)−→ · · · · · ·∆Hk−1

(Mk−1,M ′
k−1)−→ ∆H,

where ∆H0 is the initial value difference which equals to zero. ∆H is the output
difference for the two messages. ∆Hi = ∆IVi is the output difference for the
i-th iteration, and also is the initial difference for the next iteration.

It is clear that if ∆H = 0, there is a collision for M and M ′. We call the
differential that produces a collision a collision differential.

Provided that the hash function has 4 rounds, and each round has 16 step
operations. For more details, we can represent the i-th iteration differential

∆Hi
(Mi,M

′
i)−→ ∆Hi+1 as follows:

∆Hi
P1−→ ∆Ri+1,1

P2−→ ∆Ri+1,2
P3−→ ∆Ri+1,3

P4−→ ∆Ri+1,4 = ∆Hi+1.

The round differential ∆Rj−1 −→ ∆Rj(j = 1, 2, 3, 4) with the probability Pj is
expanded to the following differential characteristics.

∆Rj−1
Pj1−→ ∆X1

Pj2−→ · · · · · · Pj16−→ ∆X16 = ∆Rj ,

where ∆Xt−1
Pjt−→ ∆Xt, t = 1, 2, · · · · · · , 16 is the differential characteristic in the

t-th step of j-th round.

The probability P of the differential ∆Hi
(Mi,M

′
i)−→ ∆Hi+1 satisfies

P ≥ ∏4
i=1 Pj and Pj ≥ ∏16

t=1 Pjt.

3.3 Optimized Collision Differentials for Hash Functions

In Section 3.1, we mentioned that our attack uses a message modification tech-
nique to improve the collision probability. According to the modification tech-
nique, we can get a rough method to search for optimized differentials (including
collision differentials) of a hash function.

There are two kinds of message modifications:



1. For any two message blocks (Mi,M
′
i) and a 1-st round non-zero differential

∆Hi
(Mi,M

′
i)−→ ∆Ri+1,1.

Our attack can easily modify Mi to guarantee the 1-st round differential to
hold with probability P1 = 1.

2. Using multi-message modification techniques, we can not only guarantee the
first-round differential to hold with the probability 1, but also improve the
second-round differential probability greatly.

To find an optimized differential for a hash function, it is better to select a
message block difference which results in a last two-round differential with a
high probability.

4 Differential Attack on MD5

4.1 Notation

Before presenting our attack, we first introduce some notation to simplify the
discussion.

1. M = (m0,m1, ...,m15) and M ′ = (m′
0,m

′
1, ...,m

′
15) represent two 512-bit

messages. ∆M = (∆m0,∆m1, ...,∆m15) denotes the difference of two mes-
sage blocks. That is, ∆mi = m′

i − mi is the i − th word difference.
2. ai, di, ci, bi respectively denote the outputs of the (4i − 3)-th, (4i − 2)-th

(4i − 1)-th and 4i-th steps for compressing M , where 1 ≤ i ≤ 16. a′
i, b′i, c′i,

d′i are defined similarly.
3. ai,j , bi,j , ci,j , di,j represent respectively the j − th bit of ai, bi, ci, di, where

the least significant bit is the 1-st bit, and the most significant bit is 32-th
bit.

4. φi,j is the j-th bit of the output for the nonlinear function φi in the i-th step
operation.

5. ∆xi,j = x′
i,j − xi,j = ±1 is the bit difference that is produced by changing

the j-bit of xi. xi[j], xi[−j] (x can be a, b, c, d, φ) is the resulting values by
only changing the j− th bit of the word xi. xi[j] is obtained by changing the
j-th bit of xi from 0 to 1, and xi[−j] is obtained by changing the j-th bit of
xi from 1 to 0.

6. ∆xi[j1, j2, ..., jl] = xi[j1, j2, ..., jl]−xi denotes the difference that is produced
by the changes of j1 − th, j2 − th, ..., jl − th bits of xi. xi[±j1,±j2, ...,±jl]
is the value by change j1 − th, j2 − th, ..., jl − th bits of xi. The “+” sign
(usually is omitted) means that the bit is changed from 0 to 1, and the “–”
sign means that the bit is changed from 1 to 0.

4.2 Collision Differentials for MD5

Our attack can find many real collisions which are composed of two 1024-bit
messages (M0,M1) and (M0

′,M1
′) ) with the original initial value IV0 of MD5:

IV0 : a0 = 0x67452301, b0 = 0xefcdab89, c0 = 0x98badcfe, d0 = 0x10325476.



We select a collision differential with two iterations as follows:

∆H0
(M0,M ′

0)−→ ∆H1
(M1,M ′

1)−→ ∆H = 0

where

∆M0 = M ′
0 − M0 = (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0, 215, 0, 0, 231, 0)

∆M1 = M ′
1 − M1 = (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0,−215, 0, 0, 231, 0)

∆H1 = (231, 231 + 225, 231 + 225, 231 + 225).

Non-zero entries of ∆M0 and ∆M1 are located at positions 5, 12 and 15. ∆H1 =
(∆a,∆b,∆c,∆d) is the difference of the four chaining values (a, d, c, b) after the
first iteration.

We select ∆M0 to ensure that both 3-4 round differential happens with a
high probability. ∆M1 is selected not only to ensure both 3-4 round differential
happens with a high probability, but also to produce an output difference that
can be cancelled with the output difference ∆H1.

The collision differential with all the characteristics can be referred to Table 3
and Table 5. The columns of both tables have the same meanings. We just give
the explanation for Table 3. The first column denotes the step, the second column
is the chaining variable in each step for M0, the third is the message word for M0

in each step, the fourth is shift rotation, the fifth and the sixth are respectively
the message word difference and chaining variable difference for M0 and M ′

0, and
the seventh is the chaining variable for M ′

0. Especially, the empty items both in
sixth and fifth columns denote zero differences, and steps those aren’t listed in
the table have zero differences both for message words and chaining variables.

4.3 Sufficient Conditions for the Characteristics to Hold

In what follows, we describe how to derive a set of sufficient conditions that
guarantee the differential characteristic in Step 8 of MD5 (Table 3) to hold.
Other conditions can be derived similarly.

The differential characteristic in Step 8 of MD5 is:

(∆c2,∆d2,∆a2,∆b1) −→ ∆b2.

Each chaining variable satisfies one of the following equations.

b′1 = b1

a′
2 = a2[7, ..., 22,−23]

d′2 = d2[−7, 24, 32]
c′2 = c2[7, 8, 9, 10, 11,−12,−24,−25,−26, 27, 28, 29, 30, 31, 32, 1, 2, 3, 4, 5,−6]
b′2 = b2[1, 16,−17, 18, 19, 20,−21,−24]

According to the operations in the 8-th step, we have

b2 = c2 + ((b1 + F (c2, d2, a2) + m7 + t7) ≪ 22



b′2 = c′2 + ((b1 + F (c′2, d
′
2, a

′
2) + m′

7 + t7) ≪ 22

φ7 = F (c2, d2, a2) = (c2 ∧ d2) ∨ (¬c2 ∧ a2)

In the above operations, c2 occurs twice in the right hand side of the equation.
In order to distinguish the two, let cF

2 denote the c2 inside F , and cNF
2 denote

the c2 outside F .
The derivation is based on the following two facts:

1. Since ∆b1 = 0 and ∆m7 = 0, we know that ∆b2 = ∆cNF
2 + (∆φ7 ≪ 22).

2. Fix one or two of the variables in F so that F is reduced to a single variable.

We get a set of sufficient conditions that ensure the differential characteristic
holds.

1. The conditions for each of the non-zero bits in ∆b2.
(a) The conditions d2,11 = 1 and b2,1 = 0 ensure the change of 1-st bit of b2.

i. If d2,11 = a2,11 = 1, we know that ∆φ7,11 = 1.
ii. After ≪ 22, ∆φ7,11 is in the position 1.
iii. Since ∆cNF

2,1 = 0, so, ∆b2,1 = ∆cNF
2,1 + ∆φ7,11 = 1.

(b) The conditions d2,26 = a2,26 = 1, b2,16 = 0 and b2,17 = 1 ensure the
changes of 16-th bit and 17-th bit of b2.

(c) The conditions d2,28 = a2,28 = 0, b2,i = 0, i = 18, 19, 20 and b2,21 = 1
ensure the changes of 18-th, 19-th, 20-th, 21-th bits of b2.

(d) The conditions d2,3 = a2,3 = 0 and b2,24 = 1 ensure the change of 24-th
bit of b2. This can be proven by the equation:

∆cNF
2 [−24,−25,−26, 27] + (∆φ7[3] ≪ 22) = 223 − 224 = −223.

2. The conditions for each of the zero bits in ∆b2.
(a) The condition c2,17 = 0 ensures the changed bits from 7-th bit to 12-th

bit in c′2
NF and 17-th bit of a′

2 result in no bit change in b2. It is easily
proven by the following equation:

∆cNF
2 [7, . . . 11,−12] + (∆φ7[17] ≪ 22) = −26 + 26 = 0.

(b) The conditions d2,i = a2,i ensure that the changed i-th bit in cF
2 result

in no change in b2, where i ∈ {1, 2, 4, 5, 25, 27, 29, 30, 31}.
(c) The conditions c2,i = 1 ensure that the changed i-th bit in a2 result in

no change in b2, where i ∈ {13, 14, 15, 16, 18, 19, 20, 21, 22, 23}.
(d) The condition d2,6 = a2,6 = 0 ensures that the 6-th bit in cF

2 result in
no change in b2.

(e) The condition a2,32 = 1 ensures that the changed 32-th bit in cF
2 and

the 32-th bit in d2 result in no change in b2.
(f) The condition d2,i = 0 ensures that the changed i-th bit in a2 and the

i-th bit in cF
2 result in no change in b2, where i ∈ {8, 9, 10}.

(g) The condition d2,12 = 1 ensures that the changed 12-th bit in a2 and the
12-th bit in cF

2 result in no change in b2.



(h) The condition a2,24 = 0 ensures that the changed 24-th bit in cF
2 and

the 24-th bit in d2 result in no change in b2.
(i) The changed 7-th bits in cF

2 , d2 and a2 result in no change in b2.

By the similar method, we can derive a set of sufficient conditions (see Table 4
and Table 6) which guarantee all the differential characteristics in the collision
differential to hold.

4.4 Message Modification

Single-message Modification In order to make the attack efficient, it is very
attractive to improve over the probabilistic method that we describe, by fixing
some of the message words to a prior fulfilling some of the conditions. We observe
that it is very easy to generate messages that fulfill all the conditions of the first
16 steps of MD5. We call it single-message modification.

For each message block M0 (or similarly M1) and intermediate values (H0,
or for the second block H1 and H ′

1), we apply the following procedures to modify
M0 (or M1, respectively), so that all the conditions of round 1 (the first 16 steps)
in Table 4 and Table 6 hold.

It is easy to modify M0 such that the conditions of round 1 in Table 4 hold
with probability 1.

For example, to ensure that 3 conditions for c1 in Table 4 hold, we modify
m2 as follows:

cnew
1 ← cold

1 − cold
1,7 · 26 − cold

1,12 · 211 − cold
1,20 · 219

mnew
2 ← ((cnew

1 − cold
1 ) ≫ 17) + mold

2 .

By modifying each message word of message M0, all the conditions in round 1
of Table 4 hold. The first iteration differential hold with probability 2−43.

The same modification is applied to M1. After modification, the second iter-
ation differential hold with probability 2−37.

Multi-message Modification We further observe that it is even possible to
fulfill a part of the conditions of the first 32 steps by an multi-message modifi-
cation.

For example, if a5,32 = 1, we correct it into a5,32 = 0 by modifying m1,
m2,m3, m4,m5 such that the modification generates a partial collision from
2-6 steps, and remains that all the conditions in round 1 hold. See Table 1.
Some other conditions can be corrected by the similar modification technique or
other more precise modification techniques. By our modification, 37 conditions
in round 2-4 are undetermined in the table 4, and 30 conditions in round 2-4 are
undetermined in the table 6. So, the 1-st iteration differential holds with prob-
ability 2−37, and the second iteration differential holds with probability 2−30.



Table 1. The Message Modification for Correcting a5,32

Modify mi anew, bnew, cnew, dnew

2 m1 12 m1 ←− m1 + 226 dnew
1 , a1, b0, c0

3 m2 17 m2 ←− ((c1 − dnew
1 ) ≫ 17) − c0 − φ2(d

new
1 , a1, b0) − t2 c1, dnew

1 , a1, b0

4 m3 22 m3 ←− (b1 − c1) ≫ 22) − b0 − φ3(c1, d
new
1 , a1) − t3 b1, c1, dnew

1 , a1

5 m4 7 m4 ←− ((a2 − b1) ≫ 7) − a1 − φ4(b1, c1, d
new
1 − t4 a2, b1, c1, dnew

1

6 m5 12 m5 ←− ((d2 − a2) ≫ 12) − dnew
1 − φ5(a2, b1, c1) − t5 d2, a2, b1, c1

4.5 The Differential Attack on MD5

From the above description, it is very easy to show our attack on MD5.
The following is to describe how to find a two-block collision, of the following

form

H0
(M0,M ′

0),2
−37

−→ ∆H1
(M1,M ′

1),2
−30

−→ ∆H = 0.

1. Repeat the following steps until a first block is found
(a) Select a random message M0.
(b) Modify M0 by the message modification techniques described in the pre-

vious subsection.
(c) Then, M0 and M ′

0 = M0 + ∆M0 produce the first iteration differential

∆M0 −→ (∆H1,∆M1)

with the probability 2−37.
(d) Test if all the characteristics really hold by applying the compression

function on M0 and M ′
0.

2. Repeat the following steps until a collision is found
(a) Select a random message M1.
(b) Modify M1 by the message modification techniques described in the pre-

vious subsection.
(c) Then, M1 and M1 + ∆M1 generate the second iteration differential

(∆H1,∆M1) −→ ∆H = 0

with the probability 2−30.
(d) Test if this pair of messages lead to a collision.

The complexity of finding (M0,M
′
0) doesn’t exceed the time of running 239 MD5

operations. To select another message M0 is only to change the last two words
from the previous selected message M0. So, finding (M0,M

′
0) only needs about

one-time single-message modification for the first 14 words. This time can be ne-
glected. For each selected message M0, it is only needs two-time single-message
modifications for the last two words and 7-time multi-message modifications for
correcting 7 conditions in the second round, and each multi-message modification



only needs about a few step operations, so the total time for both kinds of mod-
ifications is not exceeds about two MD5 operations for each selected message.
According to the probability of the first iteration differential, it is easy to know
that the complexity of finding (M0,M

′
0) is not exceeds 239 MD5 operations.

Similarly, we can show that the complexity of finding (M1,M
′
1) is not exceeds

232 MD5 operations.
Two collisions of MD5 are given in Table 2. It is noted that the two collisions

Table 2. Two pairs of collision for MD5. H is the hash value with little-endian and
no message padding, and H∗ is the hash value with big-endian and message padding.

M0 2dd31d1 c4eee6c5 69a3d69 5cf9af98 87b5ca2f ab7e4612 3e580440 897ffbb8

634ad55 2b3f409 8388e483 5a417125 e8255108 9fc9cdf7 f2bd1dd9 5b3c3780

M1 d11d0b96 9c7b41dc f497d8e4 d555655a c79a7335 cfdebf0 66f12930 8fb109d1

797f2775 eb5cd530 baade822 5c15cc79 ddcb74ed 6dd3c55f d80a9bb1 e3a7cc35

M0
′ 2dd31d1 c4eee6c5 69a3d69 5cf9af98 7b5ca2f ab7e4612 3e580440 897ffbb8

634ad55 2b3f409 8388e483 5a41f125 e8255108 9fc9cdf7 72bd1dd9 5b3c3780

M1
′ d11d0b96 9c7b41dc f497d8e4 d555655a 479a7335 cfdebf0 66f12930 8fb109d1

797f2775 eb5cd530 baade822 5c154c79 ddcb74ed 6dd3c55f 580a9bb1 e3a7cc35

H 9603161f a30f9dbf 9f65ffbc f41fc7ef

H∗ a4c0d35c 95a63a80 5915367d cfe6b751

M0 2dd31d1 c4eee6c5 69a3d69 5cf9af98 87b5ca2f ab7e4612 3e580440 897ffbb8

634ad55 2b3f409 8388e483 5a417125 e8255108 9fc9cdf7 f2bd1dd9 5b3c3780

M1 313e82d8 5b8f3456 d4ac6dae c619c936 b4e253dd fd03da87 6633902 a0cd48d2

42339fe9 e87e570f 70b654ce 1e0da880 bc2198c6 9383a8b6 2b65f996 702af76f

M0
′ 2dd31d1 c4eee6c5 69a3d69 5cf9af98 7b5ca2f ab7e4612 3e580440 897ffbb8

634ad55 2b3f409 8388e483 5a41f125 e8255108 9fc9cdf7 72bd1dd9 5b3c3780

M1
′ 313e82d8 5b8f3456 d4ac6dae c619c936 34e253dd fd03da87 6633902 a0cd48d2

42339fe9 e87e570f 70b654ce 1e0d2880 bc2198c6 9383a8b6 ab65f996 702af76f

H 8d5e7019 61804e08 715d6b58 6324c015

H∗ 79054025 255fb1a2 6e4bc422 aef54eb4

start with the same 1-st 512-bit block, and that given a first block that satisfies
all the required criteria, it is easy to find many second blocks M1,M

′
1 which lead

to collisions.

5 Summary

In this paper we described a powerful attack against hash functions, and in
particular showed that finding a collision of MD5 is easily feasible.

Our attack is also able to break efficiently other hash functions, such as
HAVAL-128, MD4, RIPEMD, and SHA-0. The analysis results for these hash
functions are as follows:



1. The time complexity for finding a collision for MD4 is about 223 MD4 oper-
ations without the multi-message modification, and is about 28 MD4 oper-
ations with the multi-message modification.

2. The time complexity for finding a collision for HAVAL-128 is about 213 MD4
operations without the multi-message modification, and is 27 HAVAL-128
operations with the multi-message modification.

3. The time complexity for finding a collision for RIPEMD is about 230 RIPEMD
operations without the multi-message modification, and is 218 RIPEMD op-
erations with the multi-message modification.

4. The time complexity for finding a collision for SHA-0 is about 261 SHA-0
operations without the multi-message modification, and is 245 SHA-0 oper-
ations with the multi-message modification.
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Table 3. The Differential Characteristics in the First Iteration Differential

Step The output wi si ∆wi The output difference The output in i-th step for M ′
0

in i-th step in i-th step
for M0

4 b1 m3 22

5 a2 m4 7 231 −26 a2[7, . . . , 22,−23]

6 d2 m5 12 −26 + 223 + 231 d2[−7, 24, 32]

7 c2 m6 17 −1 − 26 + 223 − 227 c2[7, 8, 9, 10, 11,−12,−24,−25,−26,
27, 28, 29, 30, 31, 32, 1, 2, 3, 4, 5,−6]

8 b2 m7 22 1 − 215 − 217 − 223 b2[1, 16,−17, 18, 19, 20,−21,−24],

9 a3 m8 7 1 − 26 + 231 a3[−1, 2, 7, 8,−9,−32]

10 d3 m9 12 212 + 231 d3[−13, 14, 32]

11 c3 m10 17 230 + 231 c3[31, 32]

12 b3 m11 22 215 −27 − 213 + 231 b3[8,−9, 14, . . . , 19,−20, 32]

13 a4 m12 7 224 + 231 a4[−25, 26, 32]

14 d4 m13 12 231 d4[32]

15 c4 m14 17 231 23 − 215 + 231 c4[4,−16, 32]

16 b4 m15 22 −229 + 231 b4[−30, 32]

17 a5 m1 5 231 a5[32]

18 d5 m6 9 231 d5[32]

19 c5 m11 14 215 217 + 231 c5[18, 32]

20 b5 m0 20 231 b5[32]

21 a6 m5 5 231 a6[32]

22 d6 m10 9 231 d6[32]

23 c6 m15 14 c6

24 b6 m4 20 231 b6

25 a7 m9 5 a7

26 d7 m14 9 231 d7

27 c7 m3 14 c7

. . . . . . . . . . . . . . . . . . . . .

34 d9 m8 11 d9

35 c9 m11 16 215 231 c9[∗32]

36 b9 m14 23 231 231 b9[∗32]

37 a10 m1 4 231 a10[∗32]

38 d10 m4 11 231 231 d10[∗32]

39 c10 m7 16 231 c10[∗32]

. . . . . . . . . . . . . . . . . . . . .

45 a12 m9 4 231 a12[∗32]

46 d12 m12 11 231 d12[32]

47 c12 m15 16 231 c12[32]

48 b12 m2 23 231 b12[32]

49 a13 m0 6 231 a13[32]

50 d13 m7 10 231 d13[−32]

51 c13 m14 15 231 231 c13[32]

52 b13 m5 21 231 b13[−32]

. . . . . . . . . . . . . . . . . . . . .

58 d15 m15 10 231 d15[−32]

59 c15 m6 15 231 c15[32]

60 b15 m13 21 231 b15[32]

61 aa0 = a16 + a0 m4 6 231 231 aa′
0 = aa0[32]

62 dd0 = d16 + d0 m11 10 215 231 dd′
0 = dd0[26, 32]

63 cc0 = c16 + c0 m2 15 231 cc′0 = cc0[−26, 27, 32]

64 bb0 = b16 + b0 m9 21 231 bb′0 = bb0[26,−32]



Table 4. A Set of Sufficient Conditions for the First Iteration Differential

c1 c1,7 = 0, c1,12 = 0, c1,20 = 0

b1,7 = 0, b1,8 = c1,8, b1,9 = c1,9, b1,10 = c1,10, b1,11 = c1,11, b1,12 = 1, b1,13 = c1,13,
b1 b1,14 = c1,14, b1,15 = c1,15, b1,16 = c1,16, b1,17 = c1,17, b1,18 = c1,18,b1,19 = c1,19,

b1,20 = 1, b1,21 = c1,21, b1,22 = c1,22, b1,23 = c1,23, b1,24 = 0, b1,32 = 1

a2,1 = 1, a2,3 = 1, a2,6 = 1, a2,7 = 0, a2,8 = 0, a2,9 = 0, a2,10 = 0, a2,11 = 0,
a2 a2,12 = 0, a2,13 = 0, a2,14 = 0, a2,15 = 0, a2,16 = 0, a2,17 = 0, a2,18 = 0, a2,19 = 0,

a2,20 = 0, a2,21 = 0, a2,22 = 0, a2,23 = 1, a2,24 = 0, a2,26 = 0, a2,28 = 1, a2,32 = 1

d2,1 = 1, d2,2 = a2,2, d2,3 = 0, d2,4 = a2,4, d2,5 = a2,5, d2,6 = 0, d2,7 = 1, d2,8 = 0,
d2 d2,9 = 0, d2,10 = 0, d2,11 = 1, d2,12 = 1, d2,13 = 1, d2,14 = 1, d2,15 = 0, d2,16 = 1,

d2,17 = 1, d2,18 = 1, d2,19 = 1, d2,20 = 1, d2,21 = 1, d2,22 = 1, d2,23 = 1, d2,24 = 0,
d2,25 = a2,25, d2,26 = 1, d2,27 = a2,27, d2,28 = 0, d2,29 = a2,29, d2,30 = a2,30,
d2,31 = a2,31, d2,32 = 0

c2,1 = 0, c2,2 = 0, c2,3 = 0, c2,4 = 0, c2,5 = 0, c2,6 = 1, c2,7 = 0, c2,8 = 0, c2,9 = 0,
c2 c2,10 = 0, c2,11 = 0, c2,12 = 1, c2,13 = 1, c2,14 = 1, c2,15 = 1, c2,16 = 1, c2,17 = 0,

c2,18 = 1, c2,19 = 1, c2,20 = 1, c2,21 = 1, c2,22 = 1, c2,23 = 1, c2,24 = 1, c2,25 = 1,
c2,26 = 1, c2,27 = 0, c2,28 = 0, c2,29 = 0, c2,30 = 0, c2,31 = 0, c2,32 = 0

b2,1 = 0, b2,2 = 0, b2,3 = 0, b2,4 = 0, b2,5 = 0, b2,6 = 0, b2,7 = 1, b2,8 = 0, b2,9 = 1,
b2 b2,10 = 0, b2,11 = 1, b2,12 = 0, b2,14 = 0, b2,16 = 0, b2,17 = 1, b2,18 = 0, b2,19 = 0,

b2,20 = 0, b2,21 = 1, b2,24 = 1, b2,25 = 1, b2,26 = 0, b2,27 = 0, b2,28 = 0, b2,29 = 0,
b2,30 = 0, b2,31 = 0, b2,32 = 0

a3,1 = 1, a3,2 = 0, a3,3 = 1, a3,4 = 1, a3,5 = 1, a3,6 = 1, a3,7 = 0, a3,8 = 0, a3,9 = 1,
a3 a3,10 = 1, a3,11 = 1, a3,12 = 1, a3,13 = b2,13, a3,14 = 1, a3,16 = 0, a3,17 = 0, a3,18 = 0,

a3,19 = 0, a3,20 = 0, a3,21 = 1, a3,25 = 1, a3,26 = 1, a3,27 = 0, a3,28 = 1, a3,29 = 1,
a3,30 = 1, a3,31 = 1, a3,32 = 1

d3 d3,1 = 0, d3,2 = 0, d3,7 = 1, d3,8 = 0, d3,9 = 0, d3,13 = 1, d3,14 = 0, d3,16 = 1,
d3,17 = 1, d3,18 = 1, d3,19 = 1, d3,20 = 1, d3,21 = 1, d3,24 = 0, d3,31 = 1, d3,32 = 0

c3 c3,1 = 0, c3,2 = 1, c3,7 = 1, c3,8 = 1, c3,9 = 0, c3,13 = 0, c3,14 = 0, c3,15 = d3,15,
c3,17 = 1, c3,18 = 0, c3,19 = 0, c3,20 = 0, c3,16 = 1, c3,31 = 0, c3,32 = 0

b3 b3,8 = 0, b3,9 = 1, b3,13 = 1, b3,14 = 0, b3,15 = 0, b3,16 = 0, b3,17 = 0, b3,18 = 0,
b3,20 = 1, b3,25 = c3,25, b3,26 = c3,26, b3,19 = 0, b3,31 = 0, b3,32 = 0

a4 a4,4 = 1, a4,8 = 0, a4,9 = 0, a4,14 = 1, a4,15 = 1, a4,16 = 1, a4,17 = 1, a4,18 = 1,
a4,20 = 1, a4,25 = 1, a4,26 = 0, a4,31 = 1, a4,19 = 1, a4,32 = 0

d4 d4,4 = 1, d4,8 = 1, d4,9 = 1, d4,14 = 1, d4,15 = 1, d4,16 = 1, d4,17 = 1, d4,18 = 1,
d4,19 = 0, d4,20 = 1, d4,25 = 0, d4,26 = 0, d4,30 = 0, d4,32 = 0

c4 c4,4 = 0, c4,16 = 1, c4,25 = 1, c4,26 = 0, c4,30 = 1, c4,32 = 0

b4 b4,30 = 1, b4,32 = 0

a5 a5,4 = b4,4, a5,16 = b4,16, a5,18 = 0, a5,32 = 0

d5 d5,18 = 1, d5,30 = a5,30, d5,32 = 0

c5 c5,18 = 0, c5,32 = 0

b5 b5,32 = 0

a6 − b6 a6,18 = b5,18, a6,32 = 0, d6,32 = 0, c6,32 = 0, b6,32 = c6,32 + 1

c9, b12 φ34,32 = 0, b12,32 = d12,32

a13 − b13 a13,32 = c12,32, d13,32 = b12,32 + 1, c13,32 = a13,32, b13,32 = d13,32

a14 − b14 a14,32 = c13,32, d14,32 = b13,32, c14,32 = a14,32, b14,32 = d14,32

a15 a15,32 = c14,32

d15 d15,32 = b14,32

c15 c15,32 = a15,32

b15 b15,26 = 0, b15,32 = d15,32 + 1

aa0 = a16 + a0 a16,26 = 1, a16,27 = 0, a16,32 = c15,32

dd0 = d16 + d0 dd0,26 = 0, d16,32 = b15,32

cc0 = c16 + c0 cc0,26 = 1, cc0,27 = 0, cc0,32 = dd0,32, c16,32 = d16,32

bb0 = b16 + b0 bb0,26 = 0, bb0,27 = 0, bb0,6 = 0, bb0,32 = cc0,32



Table 5. All the Differential Characteristics in the Second Iteration Differential

Step The output wi si ∆wi The output Difference The output in i-th step for M ′
1

in i-th step in i-th step
for M1

IV aa0, dd0 aa0[32], dd0[26, 32]
cc0, bb0 cc0[−26, 27, 32], bb0[26,−32]

1 a1 m0 7 225 + 231 a1[26,−32]

2 d1 m1 12 25 + 225 + 231 d1[6, 26,−32]

3 c1 m2 17 25 + 211 + 216 c1[−6,−7, 8,−12, 13,
+225 + 231 -17,. . . ,-21,22,-26,. . . ,-30,31,-32]

4 b1 m3 22 −2 + 25 + 225 + 231 b1[2, 3, 4,−5, 6,−26, 27,−32]

5 a2 m4 7 231 1 + 26 + 28 + 29 + 231 a2[1,−7, 8, 9,−10,−11,−12, 13, 32]

6 d2 m5 12 −216 − 220 + 231 d2[17,−18, 21,−22, 32]

7 c2 m6 17 −26 − 227 + 231 c2[7, 8, 9,−10, 28,−29,−32]

8 b2 m7 22 215 − 217 − 223 + 231 b2[−16, 17,−18, 24, 25, 26,−27,−32]

9 a3 m8 7 1 + 26 + 231 a3[−1, 2,−7,−8,−9, 10,−32]

10 d3 m9 12 212 + 231 d3[13,−32]

11 c3 m10 17 231 c3[−32]

12 b3 m11 22 −215 −27 − 213 + 231 b3[−8, 14, 15, 16, 17, 18, 19,−20,−32]

13 a4 m12 7 224 + 231 a4[−25, . . . ,−30, 31, 32]

14 d4 m13 12 231 d4[32]

15 c4 m14 17 231 23 + 215 + 231 c4[4, 16, 32]

16 b4 m15 22 −229 + 231 b4[−30, 32]

17 a5 m1 5 231 a5[32]

18 d5 m6 9 231 d5[32]

19 c5 m11 14 −215 217 + 231 c5[18, 32]

20 b5 m0 20 231 b5[32]

21 a6 m5 5 231 a6[32]

22 d6 m10 9 231 d6[32]

23 c6 m15 14 c6[32]

24 b6 m4 20 231 b6[32]

25 a7 m9 5 a7

26 d7 m14 9 231 d7

27 c7 m3 14 c7

. . . . . . . . . . . . . . . . . . . . .

34 d9 m8 11 d9

35 c9 m11 16 −215 231 c9[∗32]

36 b9 m14 23 231 231 d9[∗32]

37 a10 m1 4 231 a10[∗32]

38 d10 m4 11 231 231 d10[∗32]

39 c10 m7 16 231 c10[∗32]

. . . . . . . . . . . . . . . . . . . . .

49 a13 m0 6 231 a13[32]

50 d13 m7 10 231 d13[−32]

51 c13 m14 15 231 231 c13[32]

52 b13 m5 21 231 b13[−32]

. . . . . . . . . . . . . . . . . . . . .

59 c15 m6 15 231 c15[32]

60 b15 m13 21 231 b15[32]

61 a16 + aa0 m4 6 231 a16 + aa0 = a′
16 + aa′

0

62 d16 + dd0 m11 10 −215 d16 + dd0 = d′
16 + dd′

0

63 c16 + cc0 m2 15 c16 + cc0 = c′16 + cc′0
64 b16 + bb0 m9 21 b16 + bb0 = b′16 + bb′0



Table 6. A Set of Sufficient Conditions for the Second Iteration Differential

a1 a1,6 = 0, a1,12 = 0, a1,22 = 1, a1,26 = 0, a1,27 = 1, a1,28 = 0, a1,32 = 1

d1,2 = 0, d1,3 = 0, d1,6 = 0, d1,7 = a1,7, d1,8 = a1,8, d1,12 = 1, d1,13 = a1,13, d1,16 = 0,
d1 d1,17 = a1,17, d1,18 = a1,18, d1,19 = a1,19, d1,20 = a1,20, d1,21 = a1,21, d1,22 = 0,

d1,26 = 0, d1,27 = 1, d1,28 = 1, d1,29 = a1,29, d1,30 = a1,30, d1,31 = a1,31, d1,32 = 1

c1,2 = 1, c1,3 = 1, c1,4 = d1,4, c1,5 = d1,5, c1,6 = 1, c1,7 = 1, c1,8 = 0, c1,9 = 1, c1,12 = 1,
c1 c1,13 = 0, c1,17 = 1, c1,18 = 1, c1,19 = 1, c1,20 = 1, c1,21 = 1, c1,22 = 0, c1,26 = 1, c1,27 = 1,

c1,28 = 1, c1,29 = 1, c1,30 = 1, c1,31 = 0, c1,32 = 1

b1,1 = c1,1, b1,2 = 0, b1,3 = 0, b1,4 = 0, b1,5 = 1, b1,6 = 0, b1,7 = 0, b1,8 = 0, b1,9 = 0,
b1 b1,10 = c1,10, b1,11 = c1,11, b1,12 = 0, b1,13 = 0, b1,17 = 0, b1,18 = 0, b1,19 = 1, b1,20 = 0,

b1,21 = 0, b1,22 = 0, b1,26 = 1, b1,27 = 0, b1,28 = 1, b1,29 = 1, b1,30 = 1, b1,31 = 0, b1,32 = 1

a2,1 = 0, a2,2 = 0, a2,3 = 0, a2,4 = 0, a2,5 = 1, a2,6 = 0, a2,7 = 1, a2,8 = 0, a2,9 = 0,
a2 a2,10 = 1, a2,11 = 1, a2,12 = 1, a2,13 = 0, a2,17 = 1, a2,18 = 1, a2,19 = 1, a2,20 = 1,

a2,27 = 0, a2,28 = 1, a2,29 = 0, a2,30 = 0, a2,21 = 0, a2,22 = 1, a2,31 = 1, a2,32 = 0

d2,1 = 0, d2,2 = 1, d2,3 = 1, d2,4 = 0, d2,5 = 1, d2,6 = 0, d2,7 = 1, d2,8 = 0, d2,9 = 0,
d2 d2,10 = 0, d2,11 = 1, d2,12 = 1, d2,13 = 0, d2,17 = 0, d2,18 = 1, d2,21 = 0, d2,22 = 1,

d2,26 = 0, d2,27 = 1, d2,28 = 0, d2,29 = 0, d2,32 = 0

c2,1 = 1, c2,7 = 0, c2,8 = 0, c2,9 = 0, c2,10 = 1, c2,11 = 1, c2,12 = 1, c2,13 = 1,
c2 c2,16 = d2,16, c2,17 = 1, c2,18 = 0, c2,21 = 0, c2,22 = 0, c2,24 = d2,24, c2,25 = d2,25,

c2,26 = 1, c2,27 = 1, c2,28 = 0, c2,29 = 1, c2,32 = 1

b2 b2,1 = 0, b2,2 = c2,2, b2,7 = 1, b2,8 = 1, b2,9 = 1, b2,10 = 1, b2,16 = 1, b2,17 = 0, b2,18 = 1,
b2,21 = 1, b2,22 = 1, b2,24 = 0, b2,25 = 0, b2,26 = 0, b2,27 = 1, b2,28 = 0, b2,29 = 0, b2,32 = 1

a3 a3,1 = 1, a3,2 = 0, a3,7 = 1, a3,8 = 1, a3,9 = 1, a3,10 = 0, a3,13 = b2,13, a3,16 = 0,
a3,17 = 1, a3,18 = 0, a3,24 = 0, a3,25 = 0, a3,26 = 0, a3,27 = 1, a3,28 = 1, a3,29 = 1,
a3,32 = 1

d3 d3,1 = 0, d3,2 = 0, d3,7 = 1, d3,8 = 1, d3,9 = 1, d3,10 = 1, d3,13 = 0, d3,16 = 1, d3,17 = 1,
d3,18 = 1, d3,19 = 0, d3,24 = 1, d3,25 = 1, d3,26 = 1, d3,27 = 1, d3,32 = 1

c3 c3,1 = 1, c3,2 = 1, c3,7 = 1, c3,8 = 1, c3,9 = 1, c3,10 = 1, c3,13 = 0, c3,14 = d3,14,
c3,15 = d3,15, c3,16 = 1, c3,17 = 1, c3,18 = 0, c3,19 = 1, c3,20 = d3,20, c3,32 = 1

b3,8 = 1, b3,13 = 1, b3,14 = 0, b3,15 = 0, b3,16 = 0, b3,17 = 0, b3,18 = 0, b3,19 = 0,
b3 b3,20 = 1, b3,25 = c3,25, b3,26 = c3,26, b3,27 = c3,27, b3,28 = c3,28, b3,29 = c3,29,

b3,30 = c3,30, b3,31 = c3,31, b3,32 = 1

a4 a4,4 = 1, a4,8 = 0, a4,14 = 1, a4,15 = 1, a4,16 = 1, a4,17 = 1, a4,18 = 1, a4,19 = 1, a4,20 = 1
a4,25 = 1, a4,26 = 1, a4,27 = 1, a4,28 = 1, a4,29 = 1, a4,30 = 1, a4,31 = 0, a4,32 = 0

d4 d4,4 = 1, d4,8 = 1, d4,14 = 1, d4,15 = 1, d4,16 = 1, d4,17 = 1, d4,18 = 1, d4,19 = 0, d4,20 = 1
d4,25 = 0, d4,26 = 0, d4,27 = 0, d4,28 = 0, d4,29 = 0, d4,30 = 0, d4,31 = 1, d4,32 = 0

c4 c4,4 = 0, c4,16 = 0, c4,25 = 1, c4,26 = 0, c4,27 = 1, c4,28 = 1, c4,29 = 1, c4,30 = 1
c4,31 = 1, c4,32 = 0

b4 b4,30 = 1, b4,32 = 0

a5 a5,4 = b4,4, a5,16 = b4,16, a5,18 = 0, a5,32 = 0

d5 d5,18 = 1, d5,30 = a5,30, d5,32 = 0

c5 c5,18 = 0, c5,32 = 0

b5 b5,32 = 0,

a6 − b6 a6,18 = b5,18, a6,32 = 0, d6,32 = 0, c6,32 = 0, b6,32 = c6,32 + 1

c9, b12 φ34,32 = 1, b12,32 = d12,32,

a13 − b13 a13,32 = c12,32, d13,32 = b12,32 + 1, c13,32 = a13,32, b13,32 = d13,32

a14 − b14 a14,32 = c13,32, d14,32 = b13,32, c14,32 = a14,32, b14,32 = d14,32

a15 − b15 a15,32 = c14,32, d15,32 = b14,32, c15,32 = a15,32, b15,32 = d15,32 + 1

a16 a16,26 = 1, a16,32 = c15,32

d16 d16,26 = 1,d16,32 = b15,32

c16 c16,26 = 1,c16,32 = a16,32

b16 b16,26 = 1


