
Towards Global Collaboration Tools

Eiman Elnahrawy
�

Department of Computer
Science

Rutgers University
Piscataway, NJ 08854, USA

eiman@paul.rutgers.edu

William C. Cheng
Department of Computer

Science
University of Southern

California
Los Angeles, CA 90089, USA

bill.cheng@acm.org

Leana Golubchik
�

Department of Computer
Science, IMSC, and ISI
University of Southern

California
Los Angeles, CA 90089, USA

leana@cs.usc.edu

ABSTRACT
The introduction of collaboration applications on the Internet has
enriched communication between diverse users via chatting,and
audio and video conferencing. It has also facilitated numerous real
life tasks such as conducting of business meetings on the web,dis-
tance learning, and distributed authoring. Unfortunately,there are
several difficulties that prevent collaboration applications from be-
ing ubiquitous on the Internet. The major difficulty is the lack of
standards for communication between different collaboration appli-
cations which restricts collaboration to only instances of the same
implementation, and in turn, limits the usability of such applica-
tions. In this paper, we propose a novel collaboration protocol for
the exchange of information between users in collaborative envi-
ronments. The proposed protocol is not tied to a specific imple-
mentation of collaboration tools which would enable severaltools
of the same type to communicate with each other independentlyof
their implementation details. We also discuss a framework archi-
tecture for integration of several collaboration tools into one ap-
plication. The proposed framework utilizes our proposed protocol,
and adopts an HTTP-based communication model in order to over-
come another difficulty which is possible firewalls constraints. In
particular, we extend the standard HTTP streaming technologyto
accommodate several forms of collaboration.

Keywords
Collaboration Tools, Usability, Firewalls, HTTP Streaming

1. INTRODUCTION
Over the past few years the Internet has grown in popularity and

in capabilities. Numerous new applications that utilize theInternet
have emerged. Currently, the Internet is used not only for storing
and exchanging of information, but also for several forms ofcol-
laboration between heterogeneous users. In general, there are three
forms of collaboration between users on the Internet [1]: commu-
nication, coordination, and production. Communication refers to
the situation where users can just communicate with each otherby
exchanging e-mails, discussing topics in chat rooms, and soon.

�
This work was done while the author was at the Department of

Computer Science at the University of Maryland, College Park.�
This work was partly done while William Cheng and Leana Gol-

ubchik were with the Department of Computer Science and UMI-
ACS at the University of Maryland, College Park. This work was
supported in part by the NSF ANI-0070016 grant.

Coordination refers to the situation where users coordinateto reach
some conclusions such as voting for the best time to schedulea
meeting. Production refers to the situation where the aim of the
collaboration is to produce materials such as collaborating on a
business report to produce its final version, or collaboration be-
tween students to produce a project report, and so on. In general,
collaboration tools are divided into two categories: synchronous
and asynchronous tools. Asynchronous collaboration tools refer to
the set of tools that do not necessarily require online synchronous
interaction between users. They include, but are not limitedto,
Bulletin Board systems, Usenet, e-mail, mailing lists, document
sharing via the well known ftp protocol, off-line auctions, and dis-
tributed authoring tools. This category of collaboration tools is not
the focus of this paper and we mentioned it for completeness ofde-
scription only. In what follows we use the word collaboration tools
to refer to synchronous collaboration tools. Synchronous collabo-
ration tools are those that require online interaction between users.
They have evolved with the growth of the Internet from simple text
based conferencing (chatting) and multiple user dungeons (MUDs)
to more sophisticated audio and video conferencing, as well as web
presentations, whiteborads, voting tools, interactive games, etc. In-
dividual collaboration tools, as well as collaboration applications
that combine several tools in one framework, are currently widely
available on the Internet, e.g., (a) ICQ [2] and mIRC [3] for online
chatting and instant messages, (b) iSpQ [4], CU-SeeMe [5], and
Microsoft NetMeeting [6] for audio and video conferencing, (c)
peer-to-peer applications, etc. These applications have facilitated
numerous real life tasks such as distance learning, conducting of
business meetings on the Internet, collaborative medical diagnosis,
distributed authoring, and so on.

1.1 Motivations and Approach
With the exception of a few chat tool implementations that use

the standard IRC protocol [7], the major objective of the current
collaboration frameworks such as [1, 8] is to define standards for
the overall communication between their applications, whichwould
enable the integration of several collaboration tools in one applica-
tion. However, they offer no global standard for the specific ex-
change of information between the corresponding tools. Evensim-
ple individual tools such as instant messages have no globalstan-
dard for the exchange of information. This generally restricts the
collaboration to only instances of the same application. The lack of
communication standards between different implementations has
limited the usability of such applications since users with different
implementations cannot collaborate with each other. In general,
this difficulty has prevented collaboration applications from being
ubiquitous on the Internet. Users from different, possibly diverse,

communities do not necessarily have access to the same collabo-
ration tool implementation. Limiting collaboration to instances of
the same implementation directly violates the major objective of
collaboration, i.e., bringing diverse users together. Although such
standardization across different implementation seems obvious, it
is surprising that there is not any effort to define and specify some
standard collaboration protocols. This is most likely due to the fact
that some of the market-dominating interactive tools, e.g., AOL and
MSN, may not want to support such inter-operability, and may even
strive to prevent it in order to preserve their own customer bases.
However, we argue that this is not fair for the community since
it prevents users from diverse countries as well as users fromthe
United States from enriching their cultural communication.We ar-
gue that when collaboration protocols become real standards, these
companies will have to conform. Therefore, our first contribution
is to introduce a novel protocol for the exchange of information be-
tween collaboration tools. This protocol is generic, i.e., it is not
tied to a specific implementation of collaboration tools that would
enable collaboration tools of the same type, but not necessarily of
the same implementation, to communicate with each other. The
protocol is based on exchanging the minimum amount of informa-
tion about any update in the collaborative environment between the
users. We hope that our proposed solution becomes the first step
toward supporting inter-operability in collaboration environments.

Our second contribution in this paper is the design of a general
framework architecture for collaboration environments that inte-
grates several tools and utilizes our proposed protocol. The frame-
work adopts an HTTP-based communication model in order to over-
come another difficulty which is possible firewalls constraints. In
general, firewalls have emerged on the Internet due to the growth
of malicious intrusions. They safeguard both personal computers
and corporate networks, for provision of privacy and integrity of
personal information. Unfortunately, firewalls and collaboration
applications have conflicting goals since existing collaborative en-
vironment frameworks are based on a heavy use of TCP and UDP
ports for exchanging information [5, 1, 6, 8]. These ports are
likely to be blocked by firewall administrators since they are con-
sidered potential threats that carry viruses or possible attacks [9].
This problem is not trivial since there are several administrative do-
mains at each user’s side; which results in more complicated con-
straints that vary from user to user. It is important to pointout that
some classes of tools such as peer-to-peer collaboration tools sys-
tems have addressed firewalls problems. They may even use HTTP
ports as we do, however, our solution is different in that it uses
the standard HTTP protocol itself and not just abusing HTTP by
tunnelling through its port. In particular, we extend the standard
HTTP streaming technology for streaming video to accommodate
all forms of collaboration. Although this HTTP-based communi-
cation serves as another step toward making collaboration applica-
tions more usable, our proposed collaboration protocol is not cou-
pled with any specific form of communication, and other models
such as communication using TCP ports can also be used.

Our last contribution is a prototype implementation for our pro-
posed framework and protocol. The prototype has been developed
entirely using the Java programming language [10]. The proto-
type is still preliminary; however, the major functionalityis mature
enough which encouraged us to present it. In general, we aim at
a proof of concept, i.e., a standard protocol and support of users
behind firewalls using the standard HTTP streaming technology.

1.2 Organization
The rest of this paper is organized as follows. Section 2 givesa

brief description of our proposed architecture of collaboration ap-

plications that support several tools, as well as our proposed HTTP-
based communication model. An overview of our proposed collab-
oration protocol is presented in Section 3. Section 4 discusses the
specifications of the protocol. An overview and a demonstration of
the prototype implementation are presented in Section 5. Section 6
discusses related work and existing collaboration applications. Fi-
nally, Section 7 concludes this paper.

2. FRAMEWORK ARCHITECTURE
This section discusses our proposed framework architecture and

gives an overview of our proposed HTTP-based communication
model. In general our architecture is based on the client-server
model. We assume that the clients can communicate with the col-
laboration server(s) usingmessages. We adopt an HTTP-based
communication model in order to overcome any existing firewalls
constraints. However, we do not claim that this is the best way
to communicate in collaboration environments nor do we claim
that all functionality provided in similar systems such as [1] can
efficientlybe supported in this model. In general, some classes
of collaboration tools such as peer-to-peer systems have tunnelled
through HTTP ports in order to bypass firewalls. Our approach,
on the other hand, is completely different. We do not abuse HTTP
by tunnelling through HTTP port 80, rather, we extend the stan-
dard HTTP streaming technology of the HTTP protocol in order
to accommodate all forms of collaboration. It is important to no-
tice that any communication model, e.g., one based on using TCP
ports, can also be used. Moreover, gateways that support cross-
communication models is another interesting extension to our cur-
rent system. We leave these issues to future work.

2.1 Communication Model
The general form of communication between a client and a web

server on the Internet is via individual HTTP request-response. In
this form of communication, the client web browser sends an HTTP
request to the web server requesting some data, then the server
sends an appropriate response to the client, and then the connec-
tion is closed. There is no further interaction between the client
and the server unless the client initiates another HTTP request to
the server. In contrast, HTTP streaming technology has made this
further interaction possible. In the HTTP streaming technology,
also known as “server push”, the web server includes information
in the response header, informing the client web browser to ex-
pect receiving more data from the server. The connection between
the server and the client remains open until either the server sends
an end marker to the client or the client interrupts the connection.
The server pushes blocks of data to the client down the connec-
tion whenever it wants to. HTTP Streaming technology utilizesthe
MIME message formats by using a variant of the “multipart/mixed”
content type called “multipart/x-mixed-replace”. It has been orig-
inally introduced to support animation in the Netscape Navigator
web browser. Currently, it is used in a limited number of applica-
tions such as streaming of continuous media and transmitting live
images, captured by webcams, to the web browser.

We extend the HTTP streaming technology as follows. We as-
sume HTTP/HTTPS collaboration servers where all communica-
tion between the clients and the server is performed via HTTP. The
data blocks routed in the collaboration environment are encoded
as messages. This message passing enables all the users to main-
tain the same state, i.e., share all the updates. The centralserver
uses “HTTP streaming” topushany new message to every client in
the environment while the clients communicate with the serverus-
ing “individual HTTP Post requests”. Each individual post request
corresponds to one message, and the content-type header field of

the request corresponds to the type of the message. There aretwo
types of messages used in the communication between the client
application instances and the central server: control messages and
event messages. The control messages are used for controlling the
environment; for example, when new users wish to join the envi-
ronment, their clients exchange control messages with the server.
The event messages carry information about any update in thecol-
laboration tools; for example, a new chat message sent by oneof
the users is delivered to the central server to be then routedto the
other users. The specification of the message format will be dis-
cussed later in Section 4. Experimental MIME content types [11,
12] are used to define a content-type for each type of the messages,
e.g., an “application/x-event-chat” type is used for an event mes-
sage that carries an update in a chat tool, while an “application/x-
control-join” type is used for a join-session control message. The
content-type information is used by the client applicationand the
central server to interpret the messages. This informationalso al-
lows integrating several collaboration tools into one client appli-
cation. Standard structures for the data encapsulated in any mes-
sage is also defined based on the content-type of the message as
we will show in Section 4. These standards ensure inter-operability
of collaboration tool implementations. The central serveropens an
HTTP stream to every user in the environment once they success-
fully join the environment. It then uses these streams to push new
messages to the users down the stream. We introduce a variant
of the “multipart/mixed” content type called “multipart/x-mixed-
update” to open a stream from the central server to the clients. The
intuition behind this type is that the routed messages carries up-
dates in the tools, i.e., the current view of the tool is only updated
and not entirely replaced by the new information as in the former
“x-mixed-replace” type used for streaming new video frames. It
is worth mentioning that the defined standards for thetypeand the
structureof messages provide protection against hackers that may
take advantage of our streaming model. In particular, the server
and/or the client implementation can discard any suspicious mes-
sage that does not conform to these standards.

2.2 Architecture Elements
Figure 1 shows the overall architecture. The architecture con-

sists of two major elements: the central server(s) and the client
application. The client application can be further dividedinto two
elements: the core element and the local collaboration tools. The
dashed line represents the communication between the clientand
the server using individual HTTP requests. The solid line repre-
sents an HTTP stream, used by the server to communicate with
the client. As we mentioned above, these two lines can be re-
placed by any other communication model. The overall communi-
cation model may contain one central server or multiple distributed
servers connected together. In case of multiple servers, the servers
should be capable of exchanging information with each other in or-
der to maintain consistency and integrity of the collaborative envi-
ronment (i.e., exchange information about participating users, mes-
sages, etc.). This functionality is not yet supported in ourcurrent
prototype. We believe that the current implementation can be fairly
extended to this multi-server case similar to Web servers, however,
we leave this extension as well as a study of the scalability and
availability issues to future work. In both cases, our view of collab-
oration servers is that they will be deployed in the public domain as
a provided service similar to the IRC protocol [7]. In the rest of this
section we briefly discuss the functionality of each element in the
architecture. In general, the functionality of collaboration environ-
ments has been studied and defined in different earlier systems such
as [1, 8]. The major functionality of any collaboration environment

consists of session management, e.g., management of participat-
ing users, communication management, access control via authen-
tication, privacy management, and activities logging for supporting
temporary disconnection, monitoring [13], etc. Our system also
supports this functionality with minor differences. Due to limited
space we omit the details of this part.

Collaboration
Tool

Collaboration
Tool

Collaboration
Tool

Receiver

Sender

Core

Client

Collaboration
Web Server

Database

Server

HTTP Stream

Individual HTTP Requests

Figure 1: Overall architecture of collaboration environments

2.2.1 Central Server
The central server is responsible for: (1) storing all the infor-

mation about the collaborative environment in a database. The in-
formation may include the supported collaboration tools, the cur-
rent participants, and their modes, e.g., active or away, and so on,
(2) routing event messages between the clients in the environment
distributing the event message, received from a client, to all par-
ticipating clients, (3) maintaining the state of the environment by
exchanging control messages with the clients for authentication,
granting privileges, leaving the environment, etc., and finally, (4)
logging all the activities in the environment.

2.2.2 Client Application
The client application is divided into two elements, the core ele-

ment and the local collaboration tools. The core element is gener-
ally responsible for handling the two way communication between
the client implementation and the server. In general, it is respon-
sible for processing all outgoing client-to-server and allincoming
server-to-client control messages. It is also responsiblefor deliv-
ering all outgoing client-to-server event messages from the collab-
oration tools to the central server, and for delivering all incoming
server-to-client event messages from the central server tothe appro-
priate tool based on the message content-type. The specific tasks
of the core element can be summarized as follows: (1) enabling
the user to join the collaborative environment by exchanging all the
necessary information with the central server about the username,
password, etc., (2) managing the two way communication between
the client application and the central server after joiningthe envi-
ronment, (3) performing the appropriate action(s) upon receiving
any message from the central server based on the type of the re-
ceived message, etc., and finally, (4) privacy management byen-
crypting any event message before sending it to the central server
and decrypting all the messages received from the central server
before delivering the message to the appropriate collaboration tool.
The local tools are responsible for: (1) parsing any messages de-
livered by the core element to extract all the necessary information
about the tool update, (2) performing the appropriate action based
on the extracted update information, (3) encapsulating anyupdate

in the tool, performed by the user, in an event message, and then
delivering the message to the core element, in order to be encrypted
and sent to the server.

3. COLLABORATION PROTOCOL
This section gives an overview of our proposed collaboration

protocol. In general, the collaboration protocol is event-driven. It
is based on exchanging the minimum amount of information about
any update in the environment, between the clients, in the form of
messages. As we defined above, there are two types of messages
used in the communication between the client application instances
and the central server: control messages and event messages. Each
client extracts the information included in these routed messages
and interprets it in order to perform the necessary updates.This
collaboration protocol provides standards for communication be-
tween individual synchronous collaboration tools such as a chat
tool, a web presentation tool, a whiteboard tool, a file transfer tool,
audio and video tools, a voting tool, etc. In addition, it also sup-
ports applications that integrate several tools into one collaboration
application since the routed event messages are distinguished via a
unique type for each tool. The major advantages of this protocol
are flexibility and efficiency with respect to the amount of infor-
mation routed in the collaborative environment. The flexibility is
due to its capability to accommodate several types of collaboration
tools independently of their implementation details, whilethe effi-
ciency is due to the fact that only the necessary informationabout
the updates is exchanged in the collaborative environment.

4. SPECIFICATIONS
We discuss the specification details of our proposed collabora-

tion protocol in this section. This protocol is still in its early ver-
sion, i.e., we study adding and removing features from the current
specifications. Our goal is to support the ultimate generic function-
ality of each collaboration tool. We will demonstrate each type of
messages by several examples as the space permits, for complete
description of the protocol specifications please refer to [14].

4.1 Control Messages
Control messages are used for controlling the environment,e.g.,

a join-session message allows new users to join the environment,
while a users-list message allows registered users to receivea list of
the current participating users. Other control messages include, but
are not limited to, new-user message and leave-session message, to
inform current registered users that a participant has joined or left
the environment, respectively, grant-privilege message to grant the
moderator privilege to a specific participant, etc. Client-to-server
control messages are processed by the central server. The central
server performs the appropriate action(s), such as updating the ses-
sion information, sending server to client(s) messages, orboth, de-
pending on the type of the control message. On the other hand,
server-to-client messages are processed by the client application in-
stance. The client application performs the appropriate action such
as updating the users’ list, depending on the type of the message.

4.1.1 Examples
As an example of the format of control messages, consider a join-

session message sent from user “A” to the central server to join the
environment. The content-type of the message is “application/x-
control-join”, while the content of the message includes theuser
name, nickname, session type (public = 0 and private = 1), pass-
word in case of private sessions, etc., in a specific order, and sep-
arated by the appropriate separators. Another example is changing

the mode of one participating user. If user “A”, with nickname
“johny”, wants to change its mode from active to away (active� �

and away���) it sends a client-to-server change-mode message to
the central server. The central server then notifies all participating
users using a server-to-client change-mode message with content-
type “application/x-control-mode”. The content of the message in
this case is the nickname of the user who changed the mode, and
the new mode of that user, separated by the appropriate separators,
e.g.,johny|2.

4.2 Event Messages
Event messages do not play any role in controlling the environ-

ment. They are used for distributing updates in the collaborative
environment to all participating users. They contain two kinds of
information: the content of the message and the content-type of
the message. The content of the message is the description ofthe
tool update. The content-type of the message determines which
tool should perform that update. Event messages are initiated by
the client applications and not by the central server. In contrast
to control messages, the central server does not perform anypro-
cessing of the content of event messages. It is only responsible for
routing these messages, using the same content and content-type of
the message, between the participating users. By default themes-
sages are routed to every user. However, users may specify who
should receive their messages, e.g., a private chat messagein a chat
tool can be addressed to a specific recipient. This is achieved in
our proposed HTTP-based communication model by including a
parameter in the client-to-server HTTP requests that includes the
recipient’s nickname. The central server then pushes the message
to the specified user only. When the client application receives an
event message from the central server, it is responsible forperform-
ing the appropriate update to the corresponding tool, depending on
the content-type of the message.

4.2.1 Examples
As an example of the format of event messages, consider a shared

web browser tool. When user “A” with nickname “amy” clicks on
a hyperlink or loads a specific page, an event message is sent to
the other participating users. The content type of the message is
“application/x-event-hyperlink”, while the content of themessage
includes the user’s nickname, and the hypelink, in a specificorder,
separated by appropriate separators, e.g.,
amy|http://www.yahoo.com

Similarly, if the same user sends a chat message to the other users,
then the content type of the message in this case is “application/x-
event-chat”, while the content of the message includes the font
name, font size, font color, font bold style (true or false),font italic
style (true or false), nickname of the sender, and the actualtext of
the chat message, e.g.,Serif|12|-65536|F|T|amy|Hello.
It is worth mentioning that we handle video and audio streaming in
a similar way. For example, we stream video as a sequence of cap-
tured live images in the form of gif or jpg frames every predefined
amount of time, based on the desired frame rate. In this case,the
event message content includes the user’s nickname, the filetype
(gif or jpg), the major and minor sequence numbers, and the frame
bytes, e.g.,jimmy|gif|100|12<CR-LF>video bytes
Where<CR-LF> refers to a carriage return followed by a line
feed, while the content of the audio event message includes the
user’s nickname, the audio frame information (the major andmi-
nor sequence numbers, encoding, rate, etc.), and the audio bytes.
The content of a file transfer event message is the nickname ofthe
sender followed by the file full name (name.extension), file size in
bytes, separated by appropriate separators, then a<CR-LF> pair

followed by the file bytes, e.g., to transfer the “abcd.pdf” file, user
“amy” sends an event message with the following content.
amy|abcd.pdf|1345<CR-LF>file bytes

5. PROTOTYPE IMPLEMENTATION
We have built a prototype implementation of our proposed ar-

chitecture entirely in the Java programming language [10].The
implemented architecture utilizes our proposed protocol and uses
our HTTP-based communication model. In particular, the client
and the server sides were developed using Java 2 Software Devel-
opment Kit JDK1.3.1. [10]. Java Web Server JSDK 2.1 offered by
Sun Microsystems as a stand-alone servlet engine [10] was used for
running the server prototype. Other stand-alone or add-on servlet
engines offered by several other companies can also be used for
running the server side implementation [15].

5.1 Server Side
We used a Java servlet [16] for the server side implementation

in order to utilize two basic features of servlets in our prototype:
(1) support of several concurrent users efficiently, (2) ability of in-
teracting closely with the web server in order to access other ser-
vices on the server, e.g., to access a database residing on the server.
In addition, servlets are written Java which is both object-oriented
and platform independent. The current prototype supports the basic
functionality of the server side. The servlet is able to process any
event message and log all the activities in the session. It can also
process the major control messages. All the synchronizationand
concurrency are functioning properly. The server implementation
is capable of properly handling concurrent users, and successfully
routing messages in the session.

5.2 Client Side
We also used Java for the client side implementation due to its

portability (i.e., more usable) and multi-threading features [10, 16].
A stand-alone Java application was chosen over a Java appletsince
Java applets are not persistent, i.e., they must be downloaded, ev-
ery time, before execution. Nevertheless, Java applets cause several
security-related problems on the client side due to the lackof trust
in remotely downloaded code. A set of collaboration tools have
been implemented and integrated into our client prototype.The
current prototype contains chat, file transfer, audio, video, and web
browser tools. The basic functionality, discussed in Section 2, of
the core element as well as of each collaboration tool is supported
in our current prototype. More sophisticated tools, such asa wite-
board tool, can be implemented and integrated into our prototype
in the same way.

5.3 Demonstration
To demonstrate our prototype, consider a typical distance learn-

ing environment. The teacher presents the material to the students
using a presentation tool such as a web presentation tool. Thepar-
ticipants may discuss some points of the presentation. The teacher
may narrate, show some video clips or live images to the students.
The students may submit their homework using appropriate tools,
etc. Our prototype supports this scenario by offering the following
tools: (a) a chat tool for discussion between participants, (b) a web
browser for material presentation, (c) an audio tool for narration,
(d) a video tool for showing the teacher, and (e) a file transfertool
for submitting homeworks, reports, etc. Each client implementa-
tion also displays a list of the current participating users. Figure 2
shows a snapshot of this scenario using our prototype.

5.4 Discussion

Figure 2: Distance Learning Session: Student Application.

It is important to distinguish between our proposed approachand
the implemented prototype at this point, since the major objective
of the current prototype is to demonstrate the soundness andthe ap-
plicability of our approach. Several extensions to the current proto-
type are still needed. These extensions are part of our future work.
For example, we argue that the proposed protocol support commu-
nication of tools of the same type independently of their implemen-
tation details. We realize that this argument need to be strengthened
by demonstrating an example using different implementations of
the same tool that are built using our proposed protocol. Also, sup-
porting plugins that work across existing tools that do not support
our protocol, e.g., plugins that enable ICQ and MSN to communi-
cate. Since these tools do not utilize our protocol, the plugins work
as proxies at each user’s side to communicate with the server,using
the proposed protocol, on behalf of the implemented tool. Another
extension is to compare the performance of other techniquesthat
can be used in implementing the server and the client sides. We fa-
vored Java over other techniques in our implementation. However,
there are other techniques that can be used such as .NET, CORBA,
or even Web services. Nevertheless, making the interface more us-
able is an important issue that we plan to investigate.

Finally, designers wish to use our proposed approach can either
use our existing implementation of the “core” element, discussed
in Section 2, and interface their implemented tool(s) usingthe cur-
rently provided Java API, or they can use our protocol to communi-
cate with the implemented server and implement their own collabo-
ration application. If they choose the first way, any tool only needs
to know how to interact with the Sender and the Receiver parts of
the client core element using the provided API. If they choosethe
second way, we urge them to also utilize our proposed architecture
since the communication between the client and the server in our
architecture is transparent to all the tools. As we briefly mentioned
above, we expect that collaboration servers will be widely deployed
in the public domain similar to the IRC servers, and that any col-
laboration tool/application that conforms to our protocolwill be
able to communicate with these servers in order to collaborate with
other participating users. For more details please refer to[14].

6. RELATED WORK
Several academic prototypes, such as Habanero [1] and Tango [8],

have been developed in order to support collaboration between users.
Their goal is to integrate several collaboration tools intoone multi-
user collaboration application. These prototypes are built using so-
phisticated frameworks where the interaction and the integration
between several tools are well defined. However, in contrast to
our proposed collaboration protocol, they offer no standard for the
specific exchange of information between the corresponding tools.
This clearly restricts the collaboration to only tools of the same im-
plementation, e.g., a chat tool built in Habanero cannot exchange
information with a chat tool built in Tango. Another key differ-
ence between our approach and these prototypes is support forfire-
walls. These systems are usually based on the client-servermodel
and the communication between the central server and the clients
is performed via TCP and UDP ports. These ports are likely to be
blocked by firewall administrators since they are considered poten-
tial threats that carry viruses or possible attacks [9]. Our approach
is also based on the client-server model. TCP/UDP-based com-
munication can also be used, however, we also propose an HTTP-
based communication model in order to solve possible firewalls
conflict. Numerous commercial products for collaboration applica-
tions are also widely available, e.g., iSpQ video chat [4], Microsoft
NetMeeting [6], and simple chat applications such as mIRC [3]
and ICQ [2]. These products, unlike our proposed architecture, are
considered primitive since they support limited number andtype
of collaboration tools. They also do not usually conform to stan-
dards, and hence the only form of collaboration is via identical in-
stances of the application. In addition, developers of suchcom-
mercial products do not traditionally take into consideration possi-
ble security constraints during development of their collaboration
applications. Consequently, their applications usually have cer-
tain inflexible requirements that must be satisfied in order to work
properly from behind firewalls [17, 5, 1, 6, 8]. Several standard
protocols have been introduced in order to support certain forms
of collaboration between users. For example, the Internet Relay
Chat (IRC) [7], and the H.323 (IP) protocol [18]. These protocols,
compared to our approach, support only one form of collaboration,
that is text conferencing, and audio and video conferencing, respec-
tively. Moreover, applications built using these protocols will not
run from behind firewalls, since these protocols use TCP and/or
UDP ports in their communication. The last class of collaboration
applications that is relevant to our work is the class of peer-to-peer
systems such as Groove [19]. Applications of this class also donot
address our proposed standardization approach. They either have
certain requirements in order to work properly behind firewalls,
e.g., opening of some TCP ports, or use HTTP tunnelling which
is basically a relay of communication via the HTTP port. Their
solution for overcoming firewalls is completely different from our
proposed communication model. Our model is not based on tun-
nelling through HTTP port. We consider HTTP tunnelling an abuse
of the HTTP protocol. Rather, our approach is based on extending
the standard HTTP streaming technology to accommodate collab-
oration. Finally, we presented a short poster on this work in [20].

7. CONCLUSIONS
We addressed several difficulties that prevent collaboration ap-

plications from being ubiquitous on the Internet and deprive sev-
eral communities of users from utilizing such useful technology. In
particular, we proposed a solution for two specific problems.The
first is the lack of standards for communication between different
collaboration applications which restricts collaborationto only in-
stances of the same implementation. For this problem, we pre-
sented a novel protocol for the exchange of information between
users in a collaboration environments and discussed its advantages

over existing frameworks. We also proposed an HTTP-based com-
munication model for collaboration in order to overcome a second
problem which is the conflict between firewalls and collaboration
applications. We discussed the overall architecture of oursystem.
The system utilizes our proposed collaboration protocol and adopts
our HTTP-based communication model. It enables integrationof
several collaboration tools into one application framework. We
briefly described the functionality of the architecture. Finally, we
discussed the implementation of our current prototype. Thesystem,
in general, is still in its early version. We basically aimedat a proof
of concept and tried to highlight major future work directions.

8. REFERENCES
[1] A. Chabert et al., “NCSA Habanero - synchronous

collaborative framework and environment (white paper),
http://havefun.ncsa.uiuc.edu/habanero/whitepapers/ecscw-
habanero.html.”

[2] “ICQ Inc., the ICQ Internet Chat Service home page,
http://www.icq.com.”

[3] “Tjerk Vonck and mIRC Corporation, the mIRC home page,
http://www.mirc.com.”

[4] “nanoCom Corporation, the iSpQ home page,
http://www.ispq.com.”

[5] “Cornell University’s CU-SeeMe web page,
http://www.imj.org.il/shazan/cornell.html.”

[6] “Microsoft Corporation, Windows NetMeeting home page,
http://www.microsoft.com/windows/netmeeting/.”

[7] J. Oikarinen, “Internet Relay Chat RFC.” RFC1459, 1993.
[8] L. Beca et al., “Tango - a collaborative environment for the

world-wide web, http://citeseer.nj.nec.com/132092.html,”
tech. rep., Syracuse University, 1997.

[9] D. B. Chapman and E. D. Zwicky,Building Internet
Firewalls. O’Reilly, first ed., September 1995.

[10] “Sun Microsystems Inc., the java.sun.com home page,
http://www.java.sun.com.”

[11] N. Borenstein and N. Freed, “Multipurpose Internet Mail
Extensions (MIME) Part One.” RFC2045, 1996.

[12] N. Borenstein and N. Freed, “Multipurpose Internet Mail
Extensions (MIME) Part Two.” RFC2046, 1996.

[13] E. Elnahrawy, “Log-based chat room monitoring using text
categorization: A comparative study,” inThe IASTED
International Conference on Information and Knowledge
Sharing (IKS 2002), November 2002.

[14] E. Elnahrawy, “An HTTP-Based Distributed Application
Framework For Interactive Group Collaborative
Environments,” Master’s thesis, University of Maryland,
College Park, MD 20742, USA, May 2002.

[15] “Sun Microsystems Inc., Java Servlet Technology: The
power behind the server,
http://java.sun.com/products/servlet/.”

[16] B. Eckel,Thinking in Java. Prentice-Hall, second ed., 2000.
[17] “CollabWorx Inc., Integrated Web Collaboration Solutions,

http://www.webwisdom.com/.”
[18] “Video Development Initiative, Video Conferencing

Cookbook,” April 2000.
http://www.vide.gatech.edu/cookbook2.0/.

[19] “Groove Networks, Inc., http://www.groove.net/.”
[20] E. Elnahrawy, W. Cheng, and L. Golubchik, “HTTP-ICE: An

HTTP-based distributed application framework for
Interactive Collaborative Environments (poster),” inThe 12th
International WWW Conference, (Budapest, Hungary), 2003.

