Towards Global Collaboration Tools

. *
Eiman Elnahrawy
Department of Computer

William C. Cheng
Department of Computer

Leana GqubchikJr
Department of Computer

Science Science Science, IMSC, and ISI
Rutgers University University of Southern University of Southern
Piscataway, NJ 08854, USA California California

eiman@paul.rutgers.edu -0S Angeles, CA

bill.cheng@acm.org

ABSTRACT

The introduction of collaboration applications on the in&t has
enriched communication between diverse users via chatind,
audio and video conferencing. It has also facilitated nauereal
life tasks such as conducting of business meetings on thediseb,
tance learning, and distributed authoring. Unfortunatiélgre are
several difficulties that prevent collaboration applioas from be-
ing ubiquitous on the Internet. The major difficulty is thekaof
standards for communication between different collabonedippli-
cations which restricts collaboration to only instanceshef stame
implementation, and in turn, limits the usability of suchpbga-
tions. In this paper, we propose a novel collaboration ptfar
the exchange of information between users in collaborative e
ronments. The proposed protocol is not tied to a specificempl
mentation of collaboration tools which would enable sevarals
of the same type to communicate with each other independehtly
their implementation details. We also discuss a framewochia
tecture for integration of several collaboration toolsiine ap-
plication. The proposed framework utilizes our proposeatqmol,
and adopts an HTTP-based communication model in order te over
come another difficulty which is possible firewalls constrsinn
particular, we extend the standard HTTP streaming techndiogy
accommodate several forms of collaboration.

Keywords

Collaboration Tools, Usability, Firewalls, HTTP Streaming

1. INTRODUCTION

Over the past few years the Internet has grown in popularity and
in capabilities. Numerous new applications that utilizeltiternet
have emerged. Currently, the Internet is used not only fanirsg
and exchanging of information, but also for several formsalf
laboration between heterogeneous users. In general, tiectierae
forms of collaboration between users on the Internet [1]: om
nication, coordination, and production. Communicatiofens to
the situation where users can just communicate with each bgher
exchanging e-mails, discussing topics in chat rooms, andnso

*This work was done while the author was at the Department of
Computer Science at the University of Maryland, College Park

tThis work was partly done while William Cheng and Leana Gol-
ubchik were with the Department of Computer Science and UMI-
ACS at the University of Maryland, College Park. This work was
supported in part by the NSF ANI-0070016 grant.

90089, USA Los Angeles, CA 90089, USA

leana@cs.usc.edu

Coordination refers to the situation where users coorditcateach
some conclusions such as voting for the best time to schedule
meeting. Production refers to the situation where the ainhef t
collaboration is to produce materials such as collabagatin a
business report to produce its final version, or collaboratie-
tween students to produce a project report, and so on. Inaener
collaboration tools are divided into two categories: syoolbus
and asynchronous tools. Asynchronous collaboration tedés to
the set of tools that do not necessarily require online symaius
interaction between users. They include, but are not limited
Bulletin Board systems, Usenet, e-mail, mailing lists, doent
sharing via the well known ftp protocol, off-line auctionsdadis-
tributed authoring tools. This category of collaborationl$ is not
the focus of this paper and we mentioned it for completeneds-of
scription only. In what follows we use the word collaborationlso

to refer to synchronous collaboration tools. Synchronalkalco-
ration tools are those that require online interaction betwésers.
They have evolved with the growth of the Internet from simple te
based conferencing (chatting) and multiple user dungedhts)

to more sophisticated audio and video conferencing, as welkd
presentations, whiteborads, voting tools, interactiveemgratc. In-
dividual collaboration tools, as well as collaboration étions
that combine several tools in one framework, are currenttjelyi
available on the Internet, e.g., (a) ICQ [2] and mIRC [3] fatine
chatting and instant messages, (b) iSpQ [4], CU-SeeMe [%], an
Microsoft NetMeeting [6] for audio and video conferencing) (
peer-to-peer applications, etc. These applications hasitithted
numerous real life tasks such as distance learning, coimguot
business meetings on the Internet, collaborative mediaghdsis,
distributed authoring, and so on.

1.1 Motivationsand Approach

With the exception of a few chat tool implementations tha us
the standard IRC protocol [7], the major objective of therent
collaboration frameworks such as [1, 8] is to define starslfod
the overall communication between their applications, wiiohld
enable the integration of several collaboration tools ie applica-
tion. However, they offer no global standard for the specific ex
change of information between the corresponding tools. Eiran
ple individual tools such as instant messages have no givaal
dard for the exchange of information. This generally resrthe
collaboration to only instances of the same applicatiore [abk of
communication standards between different implementsititas
limited the usability of such applications since users wiffecent
implementations cannot collaborate with each other. In ggne
this difficulty has prevented collaboration applicationsnfi being
ubiquitous on the Internet. Users from different, possibtese,

communities do not necessarily have access to the saméaolla
ration tool implementation. Limiting collaboration to tasces of
the same implementation directly violates the major objecbf
collaboration, i.e., bringing diverse users together. éligh such
standardization across different implementation seemios, it

is surprising that there is not any effort to define and syesiime
standard collaboration protocols. This is most likely duéhe fact
that some of the market-dominating interactive tools, &@L and
MSN, may not want to support such inter-operability, and megne
strive to prevent it in order to preserve their own customeseba
However, we argue that this is not fair for the community since
it prevents users from diverse countries as well as users tihem
United States from enriching their cultural communicatidve ar-
gue that when collaboration protocols become real standieise
companies will have to conform. Therefore, our first contliiu

is to introduce a novel protocol for the exchange of infoliorabe-
tween collaboration tools. This protocol is generic, i.eisinot
tied to a specific implementation of collaboration toolst tvauld
enable collaboration tools of the same type, but not nedgssé

the same implementation, to communicate with each other. The

protocol is based on exchanging the minimum amount of inéerm
tion about any update in the collaborative environment betwhe
users. We hope that our proposed solution becomes the &t st
toward supporting inter-operability in collaboration @onments.

Our second contribution in this paper is the design of a génera

framework architecture for collaboration environmentattimte-
grates several tools and utilizes our proposed protoca. fidme-
work adopts an HTTP-based communication model in order to ove
come another difficulty which is possible firewalls consttsirin
general, firewalls have emerged on the Internet due to thetigro
of malicious intrusions. They safeguard both personal egerp
and corporate networks, for provision of privacy and initggof
personal information. Unfortunately, firewalls and colledi®mn
applications have conflicting goals since existing coltakive en-

vironment frameworks are based on a heavy use of TCP and UDP

ports for exchanging information [5, 1, 6, 8]. These ports ar
likely to be blocked by firewall administrators since theg aon-
sidered potential threats that carry viruses or possitiéeled [9].
This problem is not trivial since there are several admiafste do-
mains at each user’s side; which results in more complicated
straints that vary from user to user. It is important to poiuat that
some classes of tools such as peer-to-peer collaboratits gps-

(9]

tems have addressed firewalls problems. They may even use HTT

ports as we do, however, our solution is different in that itsuse

the standard HTTP protocol itself and not just abusing HTTP by

tunnelling through its port. In particular, we extend thenslard
HTTP streaming technology for streaming video to accomnedat
all forms of collaboration. Although this HTTP-based communi
cation serves as another step toward making collaboragiplica-
tions more usable, our proposed collaboration protocobiou-

pled with any specific form of communication, and other models

such as communication using TCP ports can also be used.

Our last contribution is a prototype implementation for otw-p
posed framework and protocol. The prototype has been dezelo
entirely using the Java programming language [10]. Theoprot
type is still preliminary; however, the major functionalisymature

enough which encouraged us to present it. In general, we aim at

a proof of concept, i.e., a standard protocol and supporisefsu
behind firewalls using the standard HTTP streaming techyolog

1.2 Organization

The rest of this paper is organized as follows. Section 2 gives
brief description of our proposed architecture of collation ap-

plications that support several tools, as well as our prapbiSerP-
based communication model. An overview of our proposed kolla
oration protocol is presented in Section 3. Section 4 diszsithe
specifications of the protocol. An overview and a demonstnadif
the prototype implementation are presented in Section &ide6
discusses related work and existing collaboration apjidica. Fi-
nally, Section 7 concludes this paper.

2. FRAMEWORK ARCHITECTURE

This section discusses our proposed framework architetoa
gives an overview of our proposed HTTP-based communication
model. In general our architecture is based on the clienviese
model. We assume that the clients can communicate with the col
laboration server(s) usinmessages. We adopt an HTTP-based
communication model in order to overcome any existing fitsva
constraints. However, we do not claim that this is the best way
to communicate in collaboration environments nor do we claim
that all functionality provided in similar systems such &§ ¢an
efficientlybe supported in this model. In general, some classes
of collaboration tools such as peer-to-peer systems harestied
through HTTP ports in order to bypass firewalls. Our approach,
on the other hand, is completely different. We do not abuseHTT
by tunnelling through HTTP port 80, rather, we extend the stan-
dard HTTP streaming technology of the HTTP protocol in order
to accommodate all forms of collaboration. It is importaminb-
tice that any communication model, e.g., one based on usiigy T
ports, can also be used. Moreover, gateways that suppa@s-cro
communication models is another interesting extensionutaor-
rent system. We leave these issues to future work.

2.1 Communication Moded

The general form of communication between a client and a web
server on the Internet is via individual HTTP request-resporin
this form of communication, the client web browser sends an HTTP
request to the web server requesting some data, then the serve
sends an appropriate response to the client, and then tmecon
tion is closed. There is no further interaction between tlientl
and the server unless the client initiates another HTTP stqoe
the server. In contrast, HTTP streaming technology has niade t
further interaction possible. In the HTTP streaming tecbggpl
also known as “server push”, the web server includes infoonati

an the response header, informing the client web browser to ex-

pect receiving more data from the server. The connectiondmt
the server and the client remains open until either the ssemds
an end marker to the client or the client interrupts the cotioe.
The server pushes blocks of data to the client down the connec-
tion whenever it wants to. HTTP Streaming technology utilihes
MIME message formats by using a variant of the “multiparkéea’
content type called “multipart/x-mixed-replace”. It haseln orig-
inally introduced to support animation in the Netscape Nawiga
web browser. Currently, it is used in a limited number of agplic
tions such as streaming of continuous media and transmiitia
images, captured by webcams, to the web browser.

We extend the HTTP streaming technology as follows. We as-
sume HTTP/HTTPS collaboration servers where all communica-
tion between the clients and the server is performed via HTR@. T
data blocks routed in the collaboration environment areoéed
as messages. This message passing enables all the useig-to ma
tain the same state, i.e., share all the updates. The cepimadr
uses “HTTP streaming” tpushany new message to every clientin
the environment while the clients communicate with the senger
ing “individual HTTP Post requests”. Each individual posjuest
corresponds to one message, and the content-type headeoffiel

the request corresponds to the type of the message. The@are consists of session management, e.g., management ofigmertic
types of messages used in the communication between thé cliening users, communication management, access control tharau
application instances and the central server: control agessand tication, privacy management, and activities logging fquorting
event messages. The control messages are used for cogtitbii temporary disconnection, monitoring [13], etc. Our systdeo a
environment; for example, when new users wish to join the envi- supports this functionality with minor differences. Due tmitied
ronment, their clients exchange control messages with therse space we omit the details of this part.

The event messages carry information about any update itothe
laboration tools; for example, a new chat message sent bybne
the users is delivered to the central server to be then rdotdte Gotlboraton
other users. The specification of the message format will e di
cussed later in Section 4. Experimental MIME content tydds [_

12] are used to define a content-type for each type of the messa e L] Recelver I—— NTTP sireay | Collaboration
e.g., an “application/x-event-chat” type is used for annéwaes- Too Web Server
sage that carries an update in a chat tool, while an “appticati
control-join” type is used for a join-session control megsaThe sonder | e
content-type information is used by the client applicatéom the 3

central server to interpret the messages. This informatisa al- / Y
lows integrating several collaboration tools into one dliappli- cotsraion Core Database
cation. Standard structures for the data encapsulatedyimas-

sage is also defined based on the content-type of the message a
we will show in Section 4. These standards ensure inter-ofigéyab Client
of collaboration tool implementations. The central seo@ens an
HTTP stream to every user in the environment once they SUcCess i re 1: Overall architecture of collaboration environments
fully join the environment. It then uses these streams td mesv

messages to the users down the stream. We introduce a variant

of the “multipart/mixed” content type called “multipartfrixed- 2.2.1 Central Server

update” to open a stream from the central server to the slidrite
intuition behind this type is that the routed messages eauip-
dates in the tools, i.e., the current view of the tool is onpgated

and not entirely replaced by the new information as in thengr
“x-mixed-replace” type used for streaming new video framés

is worth mentioning that the defined standards fortyipeand the
structureof messages provide protection against hackers that may
take advantage of our streaming model. In particular, tieese
and/or the client implementation can discard any suspécines-
sage that does not conform to these standards.

Server

The central server is responsible for: (1) storing all thierin
mation about the collaborative environment in a datababe. iil-
formation may include the supported collaboration todis, ¢ur-
rent participants, and their modes, e.g., active or away,sanon,
(2) routing event messages between the clients in the eméon
distributing the event message, received from a client|ltpaa-
ticipating clients, (3) maintaining the state of the enmim@nt by
exchanging control messages with the clients for autherdita
granting privileges, leaving the environment, etc., andlfn (4)
logging all the activities in the environment.

2.2 Architecture Elements 2.2.2 Client Application

Figure 1 shows the overall architecture. The architecture co The client application is divided into two elements, theecele-
sists of two major elements: the central server(s) and tieatcl ment and the local collaboration tools. The core elemenéieg
application. The client application can be further dividetd two ally responsible for handling the two way communicationnestn
elements: the core element and the local collaboratiorstobhe the client implementation and the server. In general, iegpon-

dashed line represents the communication between the alieht sible for processing all outgoing client-to-server andimtbming
the server using individual HTTP requests. The solid linegep server-to-client control messages. It is also responddsieeliv-
sents an HTTP stream, used by the server to communicate withering all outgoing client-to-server event messages fraarctilab-
the client. As we mentioned above, these two lines can be re- oration tools to the central server, and for delivering atiaming
placed by any other communication model. The overall conimun server-to-client event messages from the central serthetappro-

cation model may contain one central server or multipleithsted priate tool based on the message content-type. The spexskis t
servers connected together. In case of multiple servessdtvers of the core element can be summarized as follows: (1) enabling
should be capable of exchanging information with each other-i the user to join the collaborative environment by exchaggiihthe

der to maintain consistency and integrity of the collabivea¢nvi- necessary information with the central server about the nesee,
ronment (i.e., exchange information about participatisgrs, mes- password, etc., (2) managing the two way communication hetwe
sages, etc.). This functionality is not yet supported in @urent the client application and the central server after joirtimg envi-
prototype. We believe that the current implementation eafalsly ronment, (3) performing the appropriate action(s) uporeikeaeg
extended to this multi-server case similar to Web servenseher, any message from the central server based on the type of-the re
we leave this extension as well as a study of the scalability and ceived message, etc., and finally, (4) privacy managememenby
availability issues to future work. In both cases, our vidwallab- crypting any event message before sending it to the cerdra¢s
oration servers is that they will be deployed in the public domas and decrypting all the messages received from the centragrse

a provided service similar to the IRC protocol [7]. In thetrefthis before delivering the message to the appropriate collgibortool.
section we briefly discuss the functionality of each elemerihe The local tools are responsible for: (1) parsing any messdge
architecture. In general, the functionality of collab@atenviron- livered by the core element to extract all the necessaryrimdition

ments has been studied and defined in different earlierragsach about the tool update, (2) performing the appropriate adi@sed
as [1, 8]. The major functionality of any collaboration exwviment on the extracted update information, (3) encapsulatingugpiate

in the tool, performed by the user, in an event message, amd th
delivering the message to the core element, in order to by ied
and sent to the server.

3. COLLABORATION PROTOCOL

This section gives an overview of our proposed collabonatio
protocol. In general, the collaboration protocol is everiten. It
is based on exchanging the minimum amount of informatioruabo
any update in the environment, between the clients, in thma fufr

the mode of one participating user. If user “A”, with nickname
“johny”,; wants to change its mode from active to away (activé

and away= 2) it sends a client-to-server change-mode message to
the central server. The central server then notifies allgipating
users using a server-to-client change-mode message witnten
type “application/x-control-mode”. The content of the s@ge in

this case is the nickname of the user who changed the mode, and
the new mode of that user, separated by the appropriatessersr
e.g.j ohny| 2.

messages. As we defined above, there are two types of messageg 2 Event M essages

used in the communication between the client applicatioiaintes
and the central server: control messages and event mesEzgpés
client extracts the information included in these routedssages
and interprets it in order to perform the necessary updaidss
collaboration protocol provides standards for commuidcabe-
tween individual synchronous collaboration tools such adat c
tool, a web presentation tool, a whiteboard tool, a file trartsfal,
audio and video tools, a voting tool, etc. In addition, itcatsip-
ports applications that integrate several tools into ofialooration
application since the routed event messages are disthegliiga a
unique type for each tool. The major advantages of this pobto
are flexibility and efficiency with respect to the amount ofoinf
mation routed in the collaborative environment. The flditibis
due to its capability to accommodate several types of cotktipn
tools independently of their implementation details, witile effi-
ciency is due to the fact that only the necessary informeadioout
the updates is exchanged in the collaborative environment.

4. SPECIFICATIONS

We discuss the specification details of our proposed caiéabo
tion protocol in this section. This protocol is still in itery ver-
sion, i.e., we study adding and removing features from theeotir
specifications. Our goal is to support the ultimate generiction-
ality of each collaboration tool. We will demonstrate eagbetpf
messages by several examples as the space permits, foretempl
description of the protocol specifications please refel .|

4.1 Control Messages

Control messages are used for controlling the environneegt,
a join-session message allows new users to join the envinanme
while a users-list message allows registered users to rezéiatef
the current participating users. Other control messagésdecbut
are not limited to, new-user message and leave-sessiongeessa
inform current registered users that a participant hasir left
the environment, respectively, grant-privilege messaggant the
moderator privilege to a specific participant, etc. Cliemterver
control messages are processed by the central server. Titralce
server performs the appropriate action(s), such as upptitenses-
sion information, sending server to client(s) messagelsothr, de-

Event messages do not play any role in controlling the enviro
ment. They are used for distributing updates in the collatbea
environment to all participating users. They contain twadsi of
information: the content of the message and the contert-tfp
the message. The content of the message is the descripttbe of
tool update. The content-type of the message determineshwhic
tool should perform that update. Event messages are ettiay
the client applications and not by the central server. Intresh
to control messages, the central server does not perfornprany
cessing of the content of event messages. It is only resperfsir
routing these messages, using the same content and ctyperdf
the message, between the participating users. By defauthéise
sages are routed to every user. However, users may specify who
should receive their messages, e.g., a private chat meissagbat
tool can be addressed to a specific recipient. This is aadhigve
our proposed HTTP-based communication model by including a
parameter in the client-to-server HTTP requests that irdutie
recipient’s nickname. The central server then pushes ttesage
to the specified user only. When the client application rexsean
event message from the central server, it is responsibjeefdorm-
ing the appropriate update to the corresponding tool, déipgron
the content-type of the message.

4.2.1 Examples

As an example of the format of event messages, consider aishare
web browser tool. When user “A” with nickname “amy” clicks on
a hyperlink or loads a specific page, an event message iseent t
the other participating users. The content type of the nges&a
“application/x-event-hyperlink”, while the content of theessage
includes the user’s nickname, and the hypelink, in a spemitier,
separated by appropriate separators, e.g.,

any| http://ww. yahoo. com
Similarly, if the same user sends a chat message to the atbes,u
then the content type of the message in this case is “apipliZat
event-chat”, while the content of the message includes the fo
name, font size, font color, font bold style (true or faldept italic
style (true or false), nickname of the sender, and the attuabf
the chat message, e.8eri f | 12| - 65536| F| T| any| Hel | o.
It is worth mentioning that we handle video and audio stregrrin

pending on the type of the control message. On the other hand,a similar way. For example, we stream video as a sequence of cap

server-to-client messages are processed by the clientafph in-
stance. The client application performs the appropriatemsuch
as updating the users’ list, depending on the type of the agess

4.1.1 Examples

As an example of the format of control messages, considena joi
session message sent from user “A” to the central serverridhei
environment. The content-type of the message is “apptinati
control-join”, while the content of the message includes uker
name, nickname, session type (public = 0 and private = 1g-pas
word in case of private sessions, etc., in a specific order,sap-
arated by the appropriate separators. Another example gt

tured live images in the form of gif or jpg frames every preiedi
amount of time, based on the desired frame rate. In this thse,
event message content includes the user’s nickname, thiggdige
(gif or jpg), the major and minor sequence numbers, and tradr
bytes, e.g.j i my| gi f| 100| 12<CR- LF>vi deo bytes
Where <CR- LF> refers to a carriage return followed by a line
feed, while the content of the audio event message includes th
user’s nickname, the audio frame information (the major imid
nor sequence numbers, encoding, rate, etc.), and the ayidis. b
The content of a file transfer event message is the nicknarttee of
sender followed by the file full name (name.extension), fite $n
bytes, separated by appropriate separators, the@RaLF> pair

followed by the file bytes, e.qg., to transfer the “abcd.pdf filser
“amy” sends an event message with the following content.
any| abcd. pdf | 1345<CR-LF>fil e bytes

5. PROTOTYPE IMPLEMENTATION

We have built a prototype implementation of our proposed ar-
chitecture entirely in the Java programming language [IDhe
implemented architecture utilizes our proposed protocd ases
our HTTP-based communication model. In particular, thentlie
and the server sides were developed using Java 2 Software-Devel
opment Kit JDK1.3.1. [10]. Java Web Server JSDK 2.1 offered by
Sun Microsystems as a stand-alone servlet engine [10] veakfas
running the server prototype. Other stand-alone or add-outese
engines offered by several other companies can also be osed f
running the server side implementation [15].

5.1 Server Side

We used a Java servlet [16] for the server side implementatio
in order to utilize two basic features of servlets in our ptgpe:
(1) support of several concurrent users efficiently, (2)itgtnf in-
teracting closely with the web server in order to access oftrer s
vices on the server, e.g., to access a database residing sertler.
In addition, servlets are written Java which is both objeat+ded
and platform independent. The current prototype supploetbasic
functionality of the server side. The servlet is able to pescany
event message and log all the activities in the session.nlatso
process the major control messages. All the synchronizaiich
concurrency are functioning properly. The server impletaiéon
is capable of properly handling concurrent users, and sstaly
routing messages in the session.

5.2 Client Side

We also used Java for the client side implementation duesto it
portability (i.e., more usable) and multi-threading feat[10, 16].
A stand-alone Java application was chosen over a Java apudet
Java applets are not persistent, i.e., they must be dowrdpage
ery time, before execution. Nevertheless, Java applete caveral
security-related problems on the client side due to the ¢dd¢kust
in remotely downloaded code. A set of collaboration toolsehav
been implemented and integrated into our client prototyphe
current prototype contains chat, file transfer, audio, @jdad web
browser tools. The basic functionality, discussed in Sacgipof
the core element as well as of each collaboration tool is stggo
in our current prototype. More sophisticated tools, such asdte-
board tool, can be implemented and integrated into our pno¢o
in the same way.

5.3 Demonstration

To demonstrate our prototype, consider a typical distagamt
ing environment. The teacher presents the material to tlkeests
using a presentation tool such as a web presentation toolpdie
ticipants may discuss some points of the presentation. §deher
may narrate, show some video clips or live images to the atade
The students may submit their homework using appropriatks,to
etc. Our prototype supports this scenario by offering thiofdhg
tools: (a) a chat tool for discussion between participaivsa fveb
browser for material presentation, (c) an audio tool for aion,
(d) a video tool for showing the teacher, and (e) a file transfelr
for submitting homeworks, reports, etc. Each client impeta-
tion also displays a list of the current participating uséfigure 2
shows a snapshot of this scenario using our prototype.

5.4 Discussion

almix]

T e

[cumust tfeans - oo

At iSRG)
(] student jim

) Stadeni-aany

Lecture #2

2] Student HE

. e Marsaaye & B

Teacher: Let's start our lecture today...

S | [Stadent-amy: Should we subniit sur homework
— | o
|\ e

I} Teacher: T have just sent you n copy of vour new homewark..

Student-jim: Got it
Teacher: bet's sturt then,

e Teacher: Have o book on the presentation..

Figure2: Distance Learning Session: Student Application.

Itis important to distinguish between our proposed appraach
the implemented prototype at this point, since the majoectbje
of the current prototype is to demonstrate the soundnestharap-
plicability of our approach. Several extensions to theenirproto-
type are still needed. These extensions are part of ourefutork.
For example, we argue that the proposed protocol support cemm
nication of tools of the same type independently of theirlangen-
tation details. We realize that this argument need to bagtinened
by demonstrating an example using different implememntatiof
the same tool that are built using our proposed protocol. ,/Alsp-
porting plugins that work across existing tools that do nugport
our protocol, e.g., plugins that enable ICQ and MSN to commun
cate. Since these tools do not utilize our protocol, theipkigiork
as proxies at each user’s side to communicate with the seisiag
the proposed protocol, on behalf of the implemented tool.tA&0
extension is to compare the performance of other technithats
can be used in implementing the server and the client sidefaw
vored Java over other techniques in our implementation. Hewev
there are other techniques that can be used such as .NET, CORBA,
or even Web services. Nevertheless, making the interface osr
able is an important issue that we plan to investigate.

Finally, designers wish to use our proposed approach caereith
use our existing implementation of the “core” element, désed
in Section 2, and interface their implemented tool(s) usirggcur-
rently provided Java API, or they can use our protocol to comimu
cate with the implemented server and implement their ownloolla
ration application. If they choose the first way, any toolyoméeds
to know how to interact with the Sender and the Receiver pérts o
the client core element using the provided API. If they chabse
second way, we urge them to also utilize our proposed arc¢hitec
since the communication between the client and the serveurin o
architecture is transparent to all the tools. As we briefly noswet
above, we expect that collaboration servers will be widely aggd
in the public domain similar to the IRC servers, and that avly ¢
laboration tool/application that conforms to our protoedll be
able to communicate with these servers in order to collabavéh
other participating users. For more details please refgrdp

6. RELATED WORK

Several academic prototypes, such as Habanero [1] and Téjago [

have been developed in order to support collaboration betwsers.
Their goal is to integrate several collaboration tools e multi-
user collaboration application. These prototypes aré bsihg so-
phisticated frameworks where the interaction and the iategr
between several tools are well defined. However, in contrast to
our proposed collaboration protocol, they offer no staddar the
specific exchange of information between the correspondioig t
This clearly restricts the collaboration to only tools of tame im-
plementation, e.g., a chat tool built in Habanero cannot @&xgh
information with a chat tool built in Tango. Another key differ
ence between our approach and these prototypes is suppfiréfor
walls. These systems are usually based on the client-seweel

and the communication between the central server and tha<lie
is performed via TCP and UDP ports. These ports are likely to be
blocked by firewall administrators since they are considigaten-

tial threats that carry viruses or possible attacks [9]. Quoreach

is also based on the client-server model. TCP/UDP-based com-

munication can also be used, however, we also propose an HTTP-

based communication model in order to solve possible filewal
conflict. Numerous commercial products for collaboratiopliap-
tions are also widely available, e.g., iSpQ video chat [4cdsoft
NetMeeting [6], and simple chat applications such as mIRC [3]
and ICQ [2]. These products, unlike our proposed architectare
considered primitive since they support limited number gk

of collaboration tools. They also do not usually conform tans
dards, and hence the only form of collaboration is via idehtin-
stances of the application. In addition, developers of stah-
mercial products do not traditionally take into considiemaipossi-
ble security constraints during development of their d¢mlation
applications. Consequently, their applications usuallyehcer-
tain inflexible requirements that must be satisfied in ordewark
properly from behind firewalls [17, 5, 1, 6, 8]. Several stand
protocols have been introduced in order to support certaimg

of collaboration between users. For example, the Intern&yRe
Chat (IRC) [7], and the H.323 (IP) protocol [18]. These pralec
compared to our approach, support only one form of collamra
that is text conferencing, and audio and video conferencespec-
tively. Moreover, applications built using these protaculill not
run from behind firewalls, since these protocols use TCPaand/
UDP ports in their communication. The last class of collaborat
applications that is relevant to our work is the class of fiegreer
systems such as Groove [19]. Applications of this class alsmtio
address our proposed standardization approach. They &ilie
certain requirements in order to work properly behind fikksya
e.g., opening of some TCP ports, or use HTTP tunnelling which
is basically a relay of communication via the HTTP port. Their
solution for overcoming firewalls is completely differembfn our
proposed communication model. Our model is not based on tun-
nelling through HTTP port. We consider HTTP tunnelling an @&us
of the HTTP protocol. Rather, our approach is based on exigndi
the standard HTTP streaming technology to accommodatebeolla
oration. Finally, we presented a short poster on this worl@j.[

7. CONCLUSIONS

We addressed several difficulties that prevent collabamadip-
plications from being ubiquitous on the Internet and depgev-
eral communities of users from utilizing such useful tedbgg. In
particular, we proposed a solution for two specific probleffise
first is the lack of standards for communication between wiffe
collaboration applications which restricts collaborattoronly in-
stances of the same implementation. For this problem, we pre-
sented a novel protocol for the exchange of information betwe
users in a collaboration environments and discussed itages

over existing frameworks. We also proposed an HTTP-based com
munication model for collaboration in order to overcome eosel
problem which is the conflict between firewalls and collaborati
applications. We discussed the overall architecture ofsgatem.
The system utilizes our proposed collaboration protocdladopts
our HTTP-based communication model. It enables integraifon
several collaboration tools into one application framewolVe
briefly described the functionality of the architecturendly, we
discussed the implementation of our current prototype.syiseem,
in general, is still in its early version. We basically ained proof
of concept and tried to highlight major future work directso

8. REFERENCES

[1] A. Chabert et al., “NCSA Habanero - synchronous
collaborative framework and environment (white paper),
http://havefun.ncsa.uiuc.edu/habanero/whitepapesiec
habanero.html.”

[2] “ICQ Inc., the ICQ Internet Chat Service home page,
http://www.icg.com.”

[3] “Tjerk Vonck and mIRC Corporation, the mIRC home page,
http://www.mirc.com.”

[4] “nanoCom Corporation, the iSpQ home page,
http://www.ispg.com.”

[5] “Cornell University’s CU-SeeMe web page,
http://www.imj.org.il/shazan/cornell.html.”

[6] “Microsoft Corporation, Windows NetMeeting home page,
http://www.microsoft.com/windows/netmeeting/.”

[7] J. Oikarinen, “Internet Relay Chat RFC.” RFC1459, 1993.

[8] L. Beca et al., “Tango - a collaborative environment fioe t

world-wide web, http://citeseer.nj.nec.com/132092.Ktml,

tech. rep., Syracuse University, 1997.

D. B. Chapman and E. D. ZwickyBuilding Internet

Firewalls. O'Reilly, first ed., September 1995.

“Sun Microsystems Inc., the java.sun.com home page,

http://www.java.sun.com.”

N. Borenstein and N. Freed, “Multipurpose Internet Malil

Extensions (MIME) Part One.” RFC2045, 1996.

N. Borenstein and N. Freed, “Multipurpose Internet Malil

Extensions (MIME) Part Two.” RFC2046, 1996.

E. Elnahrawy, “Log-based chat room monitoring using tex

categorization: A comparative study,” the IASTED

International Conference on Information and Knowledge

Sharing (IKS 2002), November 2002.

E. Elnahrawy, “An HTTP-Based Distributed Application

Framework For Interactive Group Collaborative

Environments,” Master’s thesis, University of Maryland,

College Park, MD 20742, USA, May 2002.

“Sun Microsystems Inc., Java Servlet Technology: The

power behind the server,

http://java.sun.com/products/serviet/.”

[16] B. Eckel,Thinking in Java. Prentice-Hall, second ed., 2000.

[17] “CollabWorx Inc., Integrated Web Collaboration Sadurts,
http://www.webwisdom.com/.”

[18] “Video Development Initiative, Video Conferencing
Cookbook,” April 2000.
http://www.vide.gatech.edu/cookbook?2.0/.

[19] “Groove Networks, Inc., http://www.groove.net/.”

[20] E. Elnahrawy, W. Cheng, and L. Golubchik, “HTTP-ICE: An
HTTP-based distributed application framework for
Interactive Collaborative Environments (poster),Tihe 12th
International WWW Conference, (Budapest, Hungary), 2003.

(9]
[10]
[11]
[12]

[13]

14]

[15]

