CS551
External v.s. Internal BGP
Bill Cheng

http://merlot.usc.edu/cs551-f12
EGP vs. IGP

- Exterior vs. Interior
- World vs. me
- Little control vs. complete administrative control
- BGP (and GGP, Hello, EGP) vs. (RIP, OSPF, IS-IS, IGRP, EIGRP)
Learning Routes

- BGP can be used by R3 and R4 to learn routes.
- How do R1 and R2 learn routes? (How does R3 pass on the routes that it has learned to R1 and R2?)
- Option 1: Inject routes in IGP (such as OSPF)
 - only works for small routing tables
- Option 2: Use I-BGP
Why BGP as an IGP?

→ I-BGP has mechanisms to forward BGP policy directives across an AS

→ Often use I-BGP with *some* other IGP (such as OSPF) that does internal routing
I-BGP

Upstream Provider A
AS 100

Upstream Provider B
AS 200

AS 1

AS 2

iBGP
eBGP
E-BGP vs. I-BGP

- E-BGP connects AS’s (external GP)
- I-BGP is *intra*-AS (internal GP)

Differences in operation
- direct vs. indirect connections
- different failure modes
- special attributes for internal use
Internal BGP (I-BGP)

- Same message types, attribute types, and state machine as E-BGP

- Different rules about re-advertising prefixes:
 - prefix learned from E-BGP can be advertised to I-BGP neighbor and vice-versa, but
 - prefix learned from one I-BGP neighbor cannot be advertised to another I-BGP neighbor
 - reason: no AS-PATH within the same AS and thus danger of looping
Internal BGP (I-BGP)

- R3 can tell R1 and R2 prefixes from R4
- R3 can tell R4 prefixes from R1 and R2
- R3 cannot tell R2 prefixes from R1
Internal BGP (I-BGP)

- R3 can tell R1 and R2 prefixes from R4
- R3 can tell R4 prefixes from R1 and R2
- R3 cannot tell R2 prefixes from R1

R2 can only find these prefixes through a direct connection to R1

Result: I-BGP routers must be *fully connected* (via TCP)!

- contrast with E-BGP sessions that map to physical links
I-BGP

Upstream Provider A
AS100

Upstream Provider B
AS200

I-BGP mesh

AS 1

AS 2

Copyright © William C. Cheng
BGP Example

R1 advertises routes within AS1 to R2
R2 advertises routes within AS2 and AS3 to R1
R2 learns AS3 routes from I-BGP with R4
R4 learns AS3 routes from E-BGP with R6
R4 advertises routes within AS2 and AS1 to R6
Link Failures

Two types of link failures:
- failure on an E-BGP link
- failure on an I-BGP Link

These failures are treated completely different in BGP

Why?
Failure on an E-BGP Link

- Note that 138.39.1.1 and 138.39.1.2 are on the *same* network
- If the link R1-R2 goes down, then the TCP connection breaks and so does the E-BGP connection; BGP routes are removed
- This is the desired behavior
Failure on an I-BGP Link

- If physical link R1-R2 goes down, the 138.39.1.0/30 network becomes unreachable, connection between R1 and R2 is lost.
- R1 and R2 should, in theory, still be able to exchange traffic, i.e., the indirect path through R3 should be used.
 - given the above configuration, it would not work!
 - thus, E-BGP and I-BGP must use different conventions with respect to TCP endpoints.
- Note: I-BGP often does not go over a physical link.
Virtual Interfaces (VIFs, a.k.a. Loop-back Interfaces)

- Note that 138.39.128.1 and 138.39.128.5 are on different networks here!
- A VIF is not associated with a physical link or hardware interface
- How do routers learn of VIF addresses?
 - use IGP
Scaling the I-BGP Mesh

Two methods:

- **BGP confederations**
 - scale by adding hierarchy to AS (sub-AS)
- **Route reflectors**
 - scale by adding hierarchical IBGP route forwarding
AS Confederation

- Subdivide a single AS into multiple, internal sub-AS’s to reduce I-BGP mesh size
 - simple hierarchy
 - but only one level

- Still advertises a single AS to external peers
 - internally use sub-AS’s
An AS Confederation

- R2 does not see sub-AS 10-14, but sees AS1
Confederations

BGP sessions between sub-AS’s are like regular E-BGP but with some changes:

- *local-pref* attribute remains meaningful within confederation (E-BGP ignores it)
- *next-hop* attribute traverses sub-AS boundaries (assumes single IGP running - everyone has same route to *next-hop*)
- AS-PATH now includes AS-CONFED-SET and AS-CONFED-SEQUENCE to avoid loops
BGP Confederation
Route Reflectors

- **Route Reflector (RR):** router whose BGP implementation allows re-advertisement of routes between I-BGP neighbors
 - RR runs modified I-BGP

- **Route Reflector Client (RRC):** router that depends on RR to re-advertise its routes to entire AS. It also depends on RR to learn routes from the rest of the network
 - RRC runs normal I-BGP
With RR there are 7 I-BGP sessions instead of 21 (=7*6/2)
Rules for Route Reflectors

- Reflectors advertise routes learned from clients into the I-BGP mesh
 - RR1 advertises 138.39.0.0/16 learned from RRC2 into I-BGP
- Reflectors do not re-advertise routes between non-clients
 - RR1 will not re-advertise 128.4.0.0/16 learned from RR3 to RR2