CS551
Multicast Routing: IGMP

Bill Cheng

http://merlot.usc.edu/cs551-f12
Components of the IP Multicast Architecture

Service model

- *host-to-router protocol (IGMP)*
- Multicast routing protocols (various)
Internet Group Management Protocol (IGMP)

- the protocol by which hosts report their multicast group memberships to neighboring routers

- version 1, the current Internet Standard, is specified in RFC-1112
 - version 2: RFC 2236

- operates over broadcast LANs and point-to-point links

- occupies similar position and role as ICMP in the TCP/IP protocol stack
Link-layer Transmission/reception

Transmission:
- an IP multicast packet is transmitted as a link-layer multicast, on those links that support multicast
- the link-layer destination address is determined by an algorithm specific to the type of link (next slide)

Reception:
- the necessary steps are taken to receive desired multicasts on a particular link, such as modifying address reception filters on LAN interfaces
- multicast routers must be able to receive all IP multicasts on a link, without knowing in advance which groups will be sent to
Mapping to Link-layer Multicast Addresses

for Ethernet and other LANs using 802 addresses:

- IP multicast address: 1110
- 28 bits
- LAN multicast address: 0000000010000000000010111100
- 23 bits

for point-to-point links: no mapping needed
IGMP Version 1 Message Format

<table>
<thead>
<tr>
<th>Vers</th>
<th>Type</th>
<th>Reserved</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Group Address

Version: 1

Type: 1 = Membership Query
2 = Membership Report

Checksum: standard IP-style checksum of the IGMP Message

Group Address: group being reported
(zero in Queries)
IGMP Goal

- Determine what IP multicast groups have receivers present on the LAN
 - just care about some vs. zero receivers, not how many

Approach

- designate one router as IGMP "querier"
- it asks all hosts
- get at least one response per active group
- example of *soft state* (periodically query), so occasional losses are okay
How IGMP Works

- on each link, one router is elected the "querier"
- querier periodically sends a *Membership Query* message to the all-systems group (224.0.0.1), with TTL = 1
- on receipt, hosts start random timers (between 0 and 10 seconds) for each multicast group to which they belong
How IGMP Works (Cont...)

- When a host’s timer for group G expires, it sends a *Membership Report to group G*, with TTL = 1
- Other members of G hear the report and stop their timers
- Routers hear *all* reports, and time out nonresponding groups
IGMP Implications

- In normal case, only one report message per group present is sent in response to a query (routers need not know who all the members are, only that members exist).

- Query interval is typically 60 -- 90 seconds
 - IGMPv2 adds explicit leave messages

- To reduce join latency, when a host first joins a group, it sends one or two immediate reports (unsolicited responses), instead of waiting for a query.
IGMP Version 2

- changes from version 1:
 - new message and procedures to reduce "leave latency"
 - standard querier election method specified
 - version and type fields merged into a single field

- backward-compatible with version 1

- soon to appear as a Proposed Standard RFC

- widely implemented already
CS551
Multicast Routing
Bill Cheng

http://merlot.usc.edu/cs551-f12
Components of the IP Multicast Architecture

- Service model
- Host-to-router protocol (IGMP)
- Multicast routing protocols (various)
Multicast Routing

- Multicast service model makes it hard to locate receivers
 - anonymity
 - dynamic join/leave

- Options so far (not very efficient)
 - flood data packets to entire network, or
 - tell routers about all possible groups and receivers so they can create routes (trees)
Early Routing Techniques

- **Flood and prune**
 - begin by flooding traffic to entire network
 - prune branches with no receivers
 - *unwanted state where there are no receivers*
 - examples: DVMRP, PIM-DM

- **Link-state multicast protocols**
 - routers advertise groups for which they have receivers to entire network
 - compute trees on demand
 - *unwanted state where there are no senders*
 - examples: MOSPF
Rendezvous Options

Specify *rendezvous* (or meeting place) to which sources send initial packets, and receivers join; requires mapping between multicast group address and meeting place

- examples: CBT, PIM-SM
Multicast Tree Taxonomy

- Multicast routing can build different types of distribution trees

 - **Source-based trees**
 - separate shortest path tree (SPT) *for each sender*
 - can have multiple senders per group
 - examples: DVMRP, MOSPF, PIM-DM, PIM-SM

 - **Shared trees**
 - single tree shared by all members
 - shared tree rooted at group core/rendezvous point
 - examples: CBT, PIM-SM
Source-based Trees

- output link determined from input link, multicast address, and source address
A Shared Tree

- output link determined from input link & multicast address
Shared v.s. Source-Based Trees

Source-based trees
- shortest path trees - low delay, better load distribution
- more state at routers (per-source state)
- efficient for dense-area multicast

Shared trees
- higher delay (bounded by factor of 2), traffic concentration
- per-group state at routers
- efficient for sparse-area multicast
Protocol Taxonomy

- DVMRP - source-based trees
- MOSPF - source-based trees
- PIM - shared and source-based trees
Who Can Send?

Anyone (Deering’s service model)
- model used by most multicast applications

Single-source
- only one node can send (others must make their own group)
- EXPRESS [Holbrook99a]
Multicast Status

- MBone exists
 - moderately widely used in research
 - but not always stable
 - multi-domain routing is hard, need to coordinate people and often people don’t talk about experimental services

- Some commercial use (applications)
 - but very little ISP support
 - concerned about how to charge, and potential over-use

- Multicast widely used on LANs
 - e.g., Google, Inktomi use it for load balancing
CS551
DVMRP & MOSPF
[Deering88b]

Bill Cheng

http://merlot.usc.edu/cs551-f12
Key Ideas

- Lays foundation for IP multicast
 - defines IP multicast service model
 - e.g., best effort, packet based, anonymous groups
 - compare to ISIS with explicit group membership, guaranteed ordering (partial or total ordering)

- Several algorithms
 - extended/bridged LANs
 - distance-vector extensions (DVMRP)
 - link-state extensions (MOSPF)

- Cost analysis
Characterizing Groups

- Pervasive or dense
 - most LANs have a receiver

- Sparse
 - few LANs have receivers

- Local
 - inside a single administrative domain
Distance-vector Multicast Routing Protocol (DVMRP)

- Basic idea: *flood and prune*
 - flood: send information about new *sources* everywhere
 - prune: routers will tell us if they don’t have receivers

- Routing information is soft state; periodically reflood (and prune) to refresh this information
 - if no refresh, then the information goes away
 ⇒ easy fault recovery

- DVMRP consists of two major components:
 - a conventional distance-vector routing protocol (like RIP)
 - a protocol for determining how to forward multicast packets, based on the routing table
Multicast Forwarding

A DVMRP router forwards a packet if

- Reverse Path Forwarding (RPF)
 - the packet arrived from the link used to reach the source of the packet (in unicast routing)
 - take advantage of what is available from unicast
- similar (but not quite the same) to flooding each packet once
 - if downstream links have not pruned the tree
Example Topology
Phase 1: Flood Using Truncated Broadcast

This router knows it has no group members on its LAN, so it does not broadcast over its LAN.
Phase 2: Prune

prune (s,g)
Phase 3: Graft
Phase 4: Steady State

Data get dropped here because of Reverse Path Forwarding check.
Sending Data in DVMRP

- Data packets are sent on all branches of the tree
 - send on all interfaces except the one they came in on

- RPF (Reverse Path Forwarding) check:
 - drop packets that arrive on incorrect interfaces (i.e., not from the unicast direction to the sending host)
 - why? suppress errant packets
DVMRP Pros and Cons

Pros
- simple
- works well with many receivers => *overhead is per-sender*, receivers are passive

Cons
- works poorly with many groups => every send in every group floods the nets
- works poorly with sparse groups => flood data everywhere and then prune back, expensive if only needed at some places
Link-state Multicast Routing

- Basic idea: treat group members (receivers) as new links
 - flood information about them to everyone in LSA message (just like LSA routing)

- Realized as MOSPF (Multicast Open Shortest-Path First)
 - add-on to OSPF
 - each router indicates groups for which there are directly-connected members
 - link-state advertisements augmented with multicast group addresses to which local members have joined
 - link-state routing algorithm augmented to compute shortest-path distribution tree from any source to any set of destinations
- Link state: Each router floods link state advertisement
- Multicast: add membership information to "link state"
- Each router computes multicast tree for each active source, builds forwarding entry with outgoing interface list.
Z has network map, including membership at X and Y
Z computes shortest path tree from S1 to X and Y (lazily, when it gets a data packet for group)
W, Q, R, each do same thing as data arrives at them
Link state advertisement with new topology may require re-computation of tree and forwarding entry (only Z and W send new LSA messages, but all on path recompute)
Link state advertisement (T) with new membership (R3) may require incremental computation and addition of interface to outgoing interface list (Z).

Overhead: all these inactive nodes must keep multicast states.
MOSPF Pros and Cons

Pros

- simple add on to OSPF
- works well with many senders
 ⇒ no per-sender state

Cons

- works poorly with many receivers
 ⇒ per-receiver costs
- works poorly with sparse groups
 ⇒ lots of information goes places that don’t want it
- works poorly with large domains
 ⇒ link-state scales with respect to number of links
 many links causes frequent changes
CS551
Multicast Routing: PIM
[Deering96a]

Bill Cheng

http://merlot.usc.edu/cs551-f12
Key Ideas

- Want a multicast routing protocol that works well with sparse users
- Use a single shared tree; fix one host as rendezvous point
Rendezvous

With source-based trees senders and receivers meet by:
- flooding and pruning
- LS distribution of group and receiver state

How do we solve the problem?
- *shared trees*
 - establish a meeting place: center, core or rendezvous point
 - trade-off: shared trees can be inefficient
PIM Protocol Overview

- Basic protocol steps
 - Routers with local members Join toward Rendezvous Point (RP) to join Shared Tree
 - Routers with local sources encapsulate data in Register messages to RP
 - Routers with local members may initiate data-driven switch to source-specific shortest path trees

- Soft state: periodic state-driven refreshes, time-out idle state

- See PIM v.2 Specification (RFC2362)
PIM Terminology

- **incoming interface (iif):** interface from which multicast packet is accepted and forwarded

- **outgoing interface list (oif list):** interfaces out of which multicast packets are forwarded

- **Rendezvous Point (RP):** used in PIM as alternative to broadcast

- **Designated Router (DR):** one router per multi-access LAN elected to track group membership, and then Join/Prune accordingly
PIM Terminology (Cont...)

- **Shared tree**: reverse-shortest-path tree rooted at RP
- **Source-specific tree**: reverse-shortest-path tree rooted at source. Also referred to as *Shortest Path Tree (SPT)*
- **Entry**: Multicast forwarding state for a particular source-specific or Shared tree
- **Reverse-path forwarding (RPF) check**: checks if a packet arrived on the interface used to reach the source of the packet
How to Build A Shared Tree

Quite easy if you have a RP!

- simply send a message towards the RP
 - use the *unicast* routing table to get there
- add links to the tree as you go
- stop if you get to a router that’s already in the tree
- get reverse shortest path to RP
Multicast Distribution Tree Example (DVMRP)

- multicast distribution tree
- links to rest of network

Source-specific forwarding entry:
- incoming: 1
- outgoing: 2, 3
PIM Example: Build Shared Tree

- Shared tree after R1, R2, R3 join
- Join message toward RP
- R4 register to be a receiver, not sending
- Note protocol independence (no DVMRP or MOSPF)
How Do Routers Know RPs?

- RP information is flooded through the network
 - cannot avoid flooding something!
 - but flooding control information is OK

- If there are multiple RPs, each router uses the same hash function to pick a unique RP for the group
 - hash based on group address
PIM: Sending Data

- If you are on the tree, you just send it as with other multicast protocols
 - it follows the multicast tree

- If you are not on the tree (say, you are a sender but not a group member), the packet is tunneled to the RP that sends it
 - this makes central placement of RP important
PIM Example: Sending Data On The Tree

S1

(\textasteriskcentered,G)

(\textasteriskcentered,G)

(\textasteriskcentered,G)

(\textasteriskcentered,G)

(\textasteriskcentered,G)

RP

(\textasteriskcentered,G)

R4

R4 sends data
Data Encapsulated in Register

S1 unicast encapsulated data packet to RP in Register

RP decapsulates, forwards down shared tree
RP May Ask High-rate Src to Join

S1

RP (*,G)

R1

R2

R3

R4
RP May Ask High-rate Src to Join (Cont...)
Build Source-specific Distribution Tree

RP distribution tree
Join messages toward S1

Build source-specific tree for high data rate source
Source-specific entry is "longer match" for source S1 than is Shared tree entry that can be used by any source.
Prune S1 off Shared Tree to Avoid Duplicates

- S1 distribution tree
- Shared tree
- Prune S1 off shared tree where iff of S1 and RP entries differ
Discussion

Context
- interest in multicast motivated by audio and video apps
- PIM was part of a large body of work in multicast routing

Impact
- improved scalability compared to DVMRP and MOSPF
- standardize and implemented

Multicast status
- PIM is an intra-domain routing protocol
 - RP flooding limits scalability
- subsequent work developed inter-domain multicast protocols
 - BGMP & MSDP
- multicast deployment deadlock
 - management of multicast is hard