USC CSD Home
 

Operating Systems - CSCI 402, Fall 2017, All Sections

Click here to see a PREVIEW of important rules that was posted before the semester started.

This is an undergraduate course on computer operating systems. (But only graduate students are permitted to be in this class. USC undergraduate students must take CS 350 in order to get credit for OS. If you are an undergraduate student, you cannnot be in this class and you cannot get credit for Operating System if you take this class. Please check with your adviser to see which Operating System class you need to take!) In addition to exploring concepts such as synchronization, virtual memory, processes, file systems and virtualization, students will develop elements of a fairly complete operating system during the course of the semester.

 
General Information
Instructor Bill Cheng (click to see office hours)
E-mail: <bill.cheng@usc.edu>.  (Please do not send HTML-only e-mails. They will not be read.)
  DEN Section (29945D+29946D) PM Section (30243D) TT Section (30203D)
Time MW 10:00am - 11:50am  MW 12:00pm - 1:50pm  TT 9:30am - 10:50am 
Location OHE 122  SGM 226  VHE 217 
TA Kwame Wright, E-mail: <kwamelaw@usc.edu>
Office Hours: Mon 3:00pm - 5:00pm in SAL open lab (in front of SAL 126), or by appointment
Long Li, E-mail: <longl@usc.edu>
Office Hours: Tue 2:00pm - 3:00pm in SAL open lab (in front of SAL 126), or by appointment
Ben Yan, E-mail: <wumoyan@usc.edu>
Office Hours: Fri 8:00am - 10:00am in SAL open lab (in front of SAL 126), or by appointment
Graders
Chujun Geng, E-mail: <chujunge@usc.edu>
Jichao Zhong, E-mail: <jichaozh@usc.edu>
(If needed, the grader will hold office hours the week after the announcement of each assignment's grades.)
Midterm Exam during class time, Wed, 10/25/2017 (firm) during class time, Wed, 10/25/2017 (firm) during class time, Thu, 10/26/2017 (firm)
Final Exam 8am-10am, Mon, 12/11/2017 (firm). 11am-1pm, Fri, 12/8/2017 (firm). 11am-1pm, Thu, 12/7/2017 (firm).
 
Class Resources
Description   :   textbooks, topics covered, grading policies, additional resources, etc.
Lectures   :   information about lectures (and lectures slides in PDF format).
Videos   :   information about DEN lectures and discussion sections videos.
Discussions   :   information about discussion sections.
Projects   :   programming assignments (please also see important information about the class projects below.)
Participation   :   how to earn extra credit for class participation.
Newsgroup   :   Google Group for discussing course materials and programming assignments. You are required to be a member of this group. (This group is by invitation only.) Please do not send request to join this group until after the first lecture.
 
News
(in reversed chronological order)
  • 11/18/2017:
    • Below is the grade normalization information for warmup2. If you are graded by Chujun Geng <chujunge@usc.edu>, his warmup2 average was 95.72 with a standard deviation of 14.36. If you are graded by Jichao Zhong <jichaozh@usc.edu>, his warmup2 average was 96.11 with a standard deviation of 20.88. The overall average for warmup2 was 95.90 with a standard deviation of 17.79.

      To figure out your normalized score for warmup2, here's what you can do. If your score is X and your grader's average is A with a standard deviation of D, then Y=(X-A)/D is how many numbers of standard deviations away you score is from your grader's average. Therefore, your normalized score would be 95.90+Y*17.79 (i.e., same number of standard deviation away from the overall class average). Your minimum score is still one point if you have submitted something for grading.

      As I have mentioned in Lecture 1, although we assume that we have a bell-shaped curve, when your score is normalized, linear interpolation is used. It's clearly not perfect since the actual curve will never be bell-shaped and linear interpolation is not the same as bell-shaped-curve interpolation. But this is what was announced at the beginning of the semester, and therefore, we will stick to this particular way of normailzation for all the programming assignments for the rest of the semester, knowing that it's not perfect.


  • 10/30/2017:
    • Below is the grade normalization information for warmup2. If you are graded by Chujun Geng <chujunge@usc.edu>, his warmup2 average was 98.45 with a standard deviation of 11.13. If you are graded by Jichao Zhong <jichaozh@usc.edu>, his warmup2 average was 93.98 with a standard deviation of 10.48. The overall average for warmup2 was 96.13 with a standard deviation of 11.02.

      To figure out your normalized score for warmup2, here's what you can do. If your score is X and your grader's average is A with a standard deviation of D, then Y=(X-A)/D is how many numbers of standard deviations away you score is from your grader's average. Therefore, your normalized score would be 96.13+Y*11.02 (i.e., same number of standard deviation away from the overall class average). Your minimum score is still one point if you have submitted something for grading.

      As I have mentioned in Lecture 1, although we assume that we have a bell-shaped curve, when your score is normalized, linear interpolation is used. It's clearly not perfect since the actual curve will never be bell-shaped and linear interpolation is not the same as bell-shaped-curve interpolation. But this is what was announced at the beginning of the semester, and therefore, we will stick to this particular way of normailzation for all the programming assignments for the rest of the semester, knowing that it's not perfect.


  • 10/17/2017: The midterm exam will be closed book, closed notes, and closed everything (and no "cheat sheet"). Also, no calculators, cell phones, or any electronic gadgets are allowed. Please bring a photo ID. Your ID will be collected at the beginning of the exam and will be returned to you when you turn in your exam. There will be assigned seating.

    The midterm exam will cover everything from the beginning of the semester to slide 43 of Lecture 16 on 10/11,12/2017, MINUS Chapter 5 (i.e., material in Ch 5 is excluded from the midterm).

    Regarding what types of questions will be on the midterm, please see the Exams section of the course description web page and slides 2 through 9 of Lecture 17 on 10/16,17/2017. Regarding regrade policy, please see the Regrade section of the course description web page.

    Here is a quick summary of the midterm exam topics (not all topics covered may be listed):

    • Ch 1 - Introduction
      • introduction
      • a simple OS
      • files
    • Ch 2 - Multithreaded Programming
      • thread creation, termination, synchronization
      • thread safety, deviations
    • Ch 3 - Basic Concepts
      • context switching, I/O
      • dynamic storage allocation
      • static linking and loading
      • booting
    • Ch 4 - Operating-System Design
      • a simple system
      • storage management
    • Warmup assignments 1 & 2
      • specs
      • FAQs
      • my posts to class Google Group
    • Kernel assignment 1
      • spec
      • FAQ
      • my posts to class Google Group

    Please note that kernel 1 is included in the midterm coverage but Chaper 5 is not. This mean that I can ask weenix-specific questions.


  • 10/11/2017:
    • Below is the grade normalization information for warmup2. If you are graded by Chujun Geng <chujunge@usc.edu>, his warmup2 average was 82.48 with a standard deviation of 30.70. If you are graded by Jichao Zhong <jichaozh@usc.edu>, his warmup2 average was 79.50 with a standard deviation of 29.51. The overall average for warmup2 was 81.02 with a standard deviation of 30.16.

      To figure out your normalized score for warmup2, here's what you can do. If your score is X and your grader's average is A with a standard deviation of D, then Y=(X-A)/D is how many numbers of standard deviations away you score is from your grader's average. Therefore, your normalized score would be 81.02+Y*30.16 (i.e., same number of standard deviation away from the overall class average). Your minimum score is still one point if you have submitted something for grading.

      As I have mentioned in Lecture 1, although we assume that we have a bell-shaped curve, when your score is normalized, linear interpolation is used. It's clearly not perfect since the actual curve will never be bell-shaped and linear interpolation is not the same as bell-shaped-curve interpolation. But this is what was announced at the beginning of the semester, and therefore, we will stick to this particular way of normailzation for all the programming assignments for the rest of the semester, knowing that it's not perfect.


  • 10/9/2017:
    • The following has been canceled! So, I will have regular office hours this Wednesday (10/11/2017) and Thursday (10/12/2017). I have to cancel my office hour this Thursday (10/12/2017) due to a dental appointment. I'm extending my office hour this Wednesday by one hour (to go from 2pm to 4pm) to make up for it. Sorry about the inconvenience.

  • 9/25/2017:
    • I kind of need to leave campus earlier today. For today's office hour, I will stay in my office till 2:15pm. I will continue to keep the office hour going as long as there are students who wants to talk to me. But as soon as the queue is empty, I will end the office hour. Tomorrow's office will be extended to go from 11pm to 12:45pm. Sorry about the short notice and inconvenience.

  • 9/20/2017:
    • Since I cut office hour short yesterday, office hour today will go till 3:30pm. Sorry about the short notice.

  • 9/19/2017:
    • I have to leave campus at 11:30am today. So, today's office hour today will only go from 10:55am to 11:30am. Sorry about the inconvenience and the short notice.

  • 9/17/2017:
    • Below is the grade normalization information for warmup1. If you are graded by Chujun Geng <chujunge@usc.edu>, his warmup1 average was 92.57 with a standard deviation of 22.07. If you are graded by Jichao Zhong <jichaozh@usc.edu>, his warmup1 average was 83.99 with a standard deviation of 32.43. The overall average for warmup1 was 88.28 with a standard deviation of 28.07.

      To figure out your normalized score for warmup1, here's what you can do. If your score is X and your grader's average is A with a standard deviation of D, then Y=(X-A)/D is how many numbers of standard deviations away you score is from your grader's average. Therefore, your normalized score would be 88.28+Y*28.07 (i.e., same number of standard deviation away from the overall class average). Your minimum score is still one point if you have submitted something for grading.

      As I have mentioned in Lecture 1, although we assume that we have a bell-shaped curve, when your score is normalized, linear interpolation is used. It's clearly not perfect since the actual curve will never be bell-shaped and linear interpolation is not the same as bell-shaped-curve interpolation. But this is what was announced at the beginning of the semester, and therefore, we will stick to this particular way of normailzation for all the programming assignments for the rest of the semester, knowing that it's not perfect.


  • 9/9/2017:
    • Starting with next week (and all the way till the end of the semester), my Tu/Th office hours will be from 11am to 12pm. Sorry if this cause any inconvenience. If you can only come by on Tu/Th between 12pm and 1pm, please make an appointment by sending me e-mail.

  • 8/27/2017:
    • The office hour tomorrow (8/28/2017) is canceled because I have to leave campus at 2pm. My office hour on Tuesday, 8/29/2017 will to from 11am to 1pm to make up for the lost hour. Sorry about the inconvenience and the short notice.

  • 8/7/2017:
    • Watch this area for important announcements.

    • To get user ID and password for accessing protected area of this web site, please visit the request access page after semester starts and submit the requested information. (You do not have to be registered for the course to get the password. You just need to have an USC e-mail address.)

    • Please do not send request to join the class Google Group until after the first lecture.
 
Prerequisites
In the official syllabus, it is listed that the prerequisites are:
(CSCI 201L or CSCI 455x) and (EE 357 or EE 352L)

Please see:

Apparently, they are the prerequisites for undergraduate students only. The CS department would waive these prerequisites for graduate students. Since undergraduate students are required to take CS 350 for OS credit, there should only be graduate students enrolled in CS 402. Therefore, these prerequisites are really not prerequisites. They should be considered recommended preparation for graduate students. The basic idea behind these prerequisites is that you are expected to know how to program and you are expected to know something about computer architecture (such as what the CPU does).
 
Important Information about Programming Assignments
The programming assignments of this class will be very demanding. You will be required to write C code. Since C is a proper subset of C++, knowing C++ well would give you enough background. However, some of the things that available in C++, such as strings and streams, are not be available in C. So, you need to know how to do things such as manipulating null-terminated array of characters (using functions such as strchr, strrchr, strlen, strcmp, strncpy, etc.) and performing console and file I/O (using functions such as printf/snprintf, fread/fwrite, read/write, fgets, etc.) in C. No other programming language will be accepted. We will not teach C in this class. You are expected to pick up C on your own if you are not familiar with it.

You should also get familiar with the Unix development environment (vi/pico/emacs, cc/gcc, make, etc.) You are expected to know how to use Unix. If you are not familiar with Unix, please read Unix for the Beginning Mage, a tutorial written by Joe Topjian. The kernel programming assignments must run on Ubuntu 12.04 or Ubuntu 14.04. Therefore, you should install Ubuntu 14.04 (or Ubuntu 12.04) on your laptop or desktop as soon as possible. If you do not have a personal laptop or desktop that runs Windows or Mac OS X, please contact the instructor as soon as possible. Please note that the preferred version of Ubuntu is Ubuntu 14.04 (unless you have a laptop with only 2GB of memory or a slow CPU, then you should install Ubuntu 12.04)

If a student registered late for this class or could not be present at the beginning of the semester, he/she is still required to turn all projects and homeworks on time or he/she will receive a score of 0 for these assignments. No exceptions!

 

[Last updated Sat Nov 18 2017]    [Please see copyright regarding copying.]